Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(8): pgae298, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39131912

RESUMO

Population genomics can reveal cryptic biological diversity that may impact fitness while simultaneously serving to delineate relevant conservation units. Here, we leverage the power of whole-genome resequencing for conservation by studying 433 individual lesser prairie-chicken (Tympanuchus pallidicinctus; LEPC, a federally endangered species of conservation concern in the United States) and greater prairie-chicken (Tympanuchus cupido; GRPC, a legally huntable species throughout much of its range). The genomic diversity of two formally recognized distinct population segments (DPSs) of LEPCs is similar, but they are genetically distinct. Neither DPS is depleted of its genomic diversity, neither is especially inbred, and temporal diversity is relatively stable in both conservation units. Interspecific differentiation between the two species was only slightly higher than that observed between LEPC DPSs, due largely to bidirectional introgression. The high resolution provided by our dataset identified a genomic continuum between the two species such that individuals sampled from the hybrid zone were imperfectly assigned to their presumptive species when considering only their physical characteristics. The admixture between the two species is reflected in the spectrum of individual ancestry coefficients, which has legal implications for the "take" of individuals under the Endangered Species Act. Overall, our data highlight the recurring dissonance between static policies and dynamic species boundaries that are increasingly obvious in the population genomic era.

2.
J Exp Zool A Ecol Integr Physiol ; 341(8): 903-912, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38946593

RESUMO

Salinity can be an environmental stressor for anurans, as their highly permeable skin makes them prone to osmotic stress when exposed to saline conditions. However, certain anuran species have colonized areas near saltwater habitats, suggesting an ability to acclimate to saline conditions. Here, we evaluated physiological and behavioral responses to saline conditions in adult Cuban treefrogs (Osteopilus septentrionalis), an invasive anuran found throughout Florida. To examine their response to salinity, adult frogs were maintained in two treatments simulating a freshwater (0.5 ppt) or brackish (8.0 ppt) environment for 6 weeks. To assess their physiological response to this potential stressor, all frogs were submerged in a brackish solution to quantify individual weight change every 2 weeks. We found that frogs maintained in brackish solution lost more weight at Weeks 2 and 6 when compared to Week 0, suggesting that salinity may be an environmental stressor for Cuban treefrogs. Yet, the weight change at Week 4 was similar to the pre-exposure period, which may indicate that constant exposure to salinity may alter their physiological response to saline conditions. To supplement the physiological analyses, we investigated avoidance behavior toward saline conditions by offering individuals a choice between freshwater or brackish environments. Our results showed that Cuban treefrogs chose freshwater environments more frequently and may thus avoid saline ones. This study reveals that salinity may induce plastic and avoidance responses in Cuban treefrogs, potentially allowing them to expand their range into areas typically stressful for most anurans.


Assuntos
Anuros , Comportamento Animal , Salinidade , Animais , Anuros/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Espécies Introduzidas , Masculino
3.
Genome Biol Evol ; 15(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36916502

RESUMO

The Lesser Prairie-Chicken (Tympanuchus pallidicinctus; LEPC) is an iconic North American prairie grouse, renowned for ornate and spectacular breeding season displays. Unfortunately, the species has disappeared across much of its historical range, with corresponding precipitous declines in contemporary population abundance, largely due to climatic and anthropogenic factors. These declines led to a 2022 US Fish and Wildlife decision to identify and list two distinct population segments (DPSs; i.e., northern and southern DPSs) as threatened or endangered under the 1973 Endangered Species Act. Herein, we describe an annotated reference genome that was generated from a LEPC sample collected from the southern DPS. We chose a representative from the southern DPS because of the potential for introgression in the northern DPS, where some populations hybridize with the Greater Prairie-Chicken (Tympanuchus cupido). This new LEPC reference assembly consists of 206 scaffolds, an N50 of 45 Mb, and 15,563 predicted protein-coding genes. We demonstrate the utility of this new genome assembly by estimating genome-wide heterozygosity in a representative LEPC and in related species. Heterozygosity in a LEPC sample was 0.0024, near the middle of the range (0.0003-0.0050) of related species. Overall, this new assembly provides a valuable resource that will enhance evolutionary and conservation genetic research in prairie grouse.


Assuntos
Galinhas , Pradaria , Animais , Espécies em Perigo de Extinção , Evolução Biológica , Heterozigoto
5.
J Hered ; 113(3): 257-271, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35143665

RESUMO

Drastic reductions in population size, or population bottlenecks, can lead to a reduction in additive genetic variance and adaptive potential. Genetic variance for some quantitative genetic traits, however, can increase after a population reduction. Empirical evaluations of quantitative traits following experimental bottlenecks indicate that non-additive genetic effects, including both allelic dominance at a given locus and epistatic interactions among loci, may impact the additive variance contributed by alleles that ultimately influences phenotypic expression and fitness. The dramatic effects of bottlenecks on overall genetic diversity have been well studied, but relatively little is known about how dominance and demographic events like bottlenecks can impact additive genetic variance. Herein, we critically examine how the degree of dominance among alleles affects additive genetic variance after a bottleneck. We first review and synthesize studies that document the impact of empirical bottlenecks on dominance variance. We then extend earlier work by elaborating on 2 theoretical models that illustrate the relationship between dominance and the potential increase in additive genetic variance immediately following a bottleneck. Furthermore, we investigate the parameters that influence the maximum level of genetic variation (associated with adaptive potential) after a bottleneck, including the number of founding individuals. Finally, we validated our methods using forward-time population genetic simulations of loci with varying dominance and selection levels. The fate of non-additive genetic variation following bottlenecks could have important implications for conservation and management efforts in a wide variety of taxa, and our work should help contextualize future studies (e.g., epistatic variance) in population genomics.


Assuntos
Epistasia Genética , Genética Populacional , Modelos Genéticos , Animais , Variação Genética , Fenótipo
6.
Toxins (Basel) ; 12(11)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137918

RESUMO

Alkaloids are important metabolites found across a variety of organisms with diverse ecological functions. Of particular interest are alkaloids found in ants, organisms well known for dominating the ecosystems they dwell in. Within ants, alkaloids are found in venom and function as potent weapons against heterospecific species. However, research is often limited to pest species or species with parasitic lifestyles and thus fails to address the broader ecological function of ant venom alkaloids. Here we describe a new species of free-living Megalomyrmex ant: Megalomyrmex peetersi sp. n. In addition, we identify its singular venom alkaloid (trans-2-butyl-5-heptylpyrrolidine) and elucidate the antibiotic and insecticidal functions of its venom. Our results show that Megalomyrmex peetersi sp. n. venom is an effective antibiotic and insecticide. These results are comparable to venom alkaloids found in other ant species, such as Solenopsis invicta. This research provides great insight into venom alkaloid function, and it is the first study to explore these ideas in the Megalomyrmex system.


Assuntos
Alcaloides/toxicidade , Venenos de Formiga/toxicidade , Antibacterianos/toxicidade , Formigas , Inseticidas/toxicidade , Alcaloides/química , Animais , Venenos de Formiga/química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Feminino , Inseticidas/química , Isópteros/efeitos dos fármacos , Dose Letal Mediana , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA