Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Appl Lab Med ; 1(1): 25-35, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33626812

RESUMO

BACKGROUND: We describe a novel system control (SC) implemented in an automated AmpliSeq™-based next-generation sequencing (NGS)2 run that simultaneously acts as (a) an external positive/sensitivity control, (b) a spike-in QC for DNA extraction, and (c) a nontemplate control to detect exogenous DNA contamination. METHODS: Plasmids carrying wild-type tobacco mosaic virus sequence and a sequence with three designed mutations were synthesized and mixed, such that the mutations are present at 5% variant frequency in the mixture designated as SC. SC was used as a stand-alone sample and spiked into each sample in each run. A cell line-derived reference material, in both a formalin-fixed paraffin-embedded (FFPE) sample and genomic DNA (gDNA), was sequenced in the same runs. RESULTS: By interpolation, 100 fg SC spiked in FFPE sample produced sequencing coverage equivalent to approximately 3 fg in the gDNA. In the SC-only sample, all three designed mutations were recovered around 5% as expected, while no significant reads of human genome were present. In samples with a common PCR inhibitor, coverage for both SC and target amplicons were eliminated. An inverse relationship between the coverage of SC and DNA input was observed. In clinical samples, the ratio of SC to the median coverage of sample can be used to indicate insufficient DNA input. CONCLUSIONS: The SC is an elegant and comprehensive QC concept for NGS-based diagnostic tests.

2.
PLoS One ; 10(9): e0137526, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26348928

RESUMO

Genome-wide functional analyses require high-resolution genome assembly and annotation. We applied ChIA-PET to analyze gene regulatory networks, including 3D chromosome interactions, underlying thyroid hormone (TH) signaling in the frog Xenopus tropicalis. As the available versions of Xenopus tropicalis assembly and annotation lacked the resolution required for ChIA-PET we improve the genome assembly version 4.1 and annotations using data derived from the paired end tag (PET) sequencing technologies and approaches (e.g., DNA-PET [gPET], RNA-PET etc.). The large insert (~10 Kb, ~17 Kb) paired end DNA-PET with high throughput NGS sequencing not only significantly improved genome assembly quality, but also strongly reduced genome "fragmentation", reducing total scaffold numbers by ~60%. Next, RNA-PET technology, designed and developed for the detection of full-length transcripts and fusion mRNA in whole transcriptome studies (ENCODE consortia), was applied to capture the 5' and 3' ends of transcripts. These amendments in assembly and annotation were essential prerequisites for the ChIA-PET analysis of TH transcription regulation. Their application revealed complex regulatory configurations of target genes and the structures of the regulatory networks underlying physiological responses. Our work allowed us to improve the quality of Xenopus tropicalis genomic resources, reaching the standard required for ChIA-PET analysis of transcriptional networks. We consider that the workflow proposed offers useful conceptual and methodological guidance and can readily be applied to other non-conventional models that have low-resolution genome data.


Assuntos
Genoma , Hormônios Tireóideos/genética , Transcriptoma/genética , Xenopus/genética , Animais , Cromatina/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Anotação de Sequência Molecular , RNA/genética , RNA Mensageiro/genética , Análise de Sequência de DNA
3.
Cell Rep ; 12(2): 272-85, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26146084

RESUMO

Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET) whole-genome sequencing, we analyzed 15 gastric cancers (GCs) from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H(+) leakage, and the fusion might contribute to invasiveness once a cell is transformed.


Assuntos
Claudinas/genética , Proteínas Ativadoras de GTPase/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias Gástricas/patologia , Sequência de Aminoácidos , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Clatrina/farmacologia , Claudinas/metabolismo , Cães , Endocitose/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Humanos , Células MCF-7 , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Proteínas de Fusão Oncogênica/genética , Fenótipo , Neoplasias Gástricas/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
4.
Nature ; 504(7479): 306-310, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24213634

RESUMO

In multicellular organisms, transcription regulation is one of the central mechanisms modelling lineage differentiation and cell-fate determination. Transcription requires dynamic chromatin configurations between promoters and their corresponding distal regulatory elements. It is believed that their communication occurs within large discrete foci of aggregated RNA polymerases termed transcription factories in three-dimensional nuclear space. However, the dynamic nature of chromatin connectivity has not been characterized at the genome-wide level. Here, through a chromatin interaction analysis with paired-end tagging approach using an antibody that primarily recognizes the pre-initiation complexes of RNA polymerase II, we explore the transcriptional interactomes of three mouse cells of progressive lineage commitment, including pluripotent embryonic stem cells, neural stem cells and neurosphere stem/progenitor cells. Our global chromatin connectivity maps reveal approximately 40,000 long-range interactions, suggest precise enhancer-promoter associations and delineate cell-type-specific chromatin structures. Analysis of the complex regulatory repertoire shows that there are extensive colocalizations among promoters and distal-acting enhancers. Most of the enhancers associate with promoters located beyond their nearest active genes, indicating that the linear juxtaposition is not the only guiding principle driving enhancer target selection. Although promoter-enhancer interactions exhibit high cell-type specificity, promoters involved in interactions are found to be generally common and mostly active among different cells. Chromatin connectivity networks reveal that the pivotal genes of reprogramming functions are transcribed within physical proximity to each other in embryonic stem cells, linking chromatin architecture to coordinated gene expression. Our study sets the stage for the full-scale dissection of spatial and temporal genome structures and their roles in orchestrating development.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Animais , Linhagem Celular , Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Células-Tronco Neurais/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica/genética , Peixe-Zebra/genética
5.
Cell Rep ; 2(5): 1207-19, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23103170

RESUMO

Chromatin interactions play important roles in transcription regulation. To better understand the underlying evolutionary and functional constraints of these interactions, we implemented a systems approach to examine RNA polymerase-II-associated chromatin interactions in human cells. We found that 40% of the total genomic elements involved in chromatin interactions converged to a giant, scale-free-like, hierarchical network organized into chromatin communities. The communities were enriched in specific functions and were syntenic through evolution. Disease-associated SNPs from genome-wide association studies were enriched among the nodes with fewer interactions, implying their selection against deleterious interactions by limiting the total number of interactions, a model that we further reconciled using somatic and germline cancer mutation data. The hubs lacked disease-associated SNPs, constituted a nonrandomly interconnected core of key cellular functions, and exhibited lethality in mouse mutants, supporting an evolutionary selection that favored the nonrandom spatial clustering of the least-evolving key genomic domains against random genetic or transcriptional errors in the genome. Altogether, our analyses reveal a systems-level evolutionary framework that shapes functionally compartmentalized and error-tolerant transcriptional regulation of human genome in three dimensions.


Assuntos
Cromatina/metabolismo , Animais , Evolução Biológica , Redes Reguladoras de Genes , Genoma , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Células K562 , Células MCF-7 , Camundongos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Transcrição Gênica
6.
Methods ; 58(3): 289-99, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22926262

RESUMO

Long-range chromatin contacts between specific DNA regulatory elements play a pivotal role in gene expression regulation, and a global characterization of these interactions in the 3-dimensional (3D) chromatin structure is imperative in understanding signaling networks and cell states. Chromatin Interaction Analysis using Paired-End Tag sequencing (ChIA-PET) is a method which converts functional chromatin structure into millions of short tag sequences. Combining Chromatin Immunoprecipitation (ChIP), proximity ligation and high-throughput sequencing, ChIA-PET provides a global and unbiased interrogation of higher-order chromatin structures associated with specific protein factors. Here, we describe the detailed procedures of the ChIA-PET methodology, unraveling transcription-associated chromatin contacts in a model human cell line.


Assuntos
Cromatina/genética , Análise de Sequência de DNA , Sequência de Bases , Linhagem Celular , Cromatina/ultraestrutura , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Reagentes de Ligações Cruzadas/química , DNA/química , DNA/genética , DNA/isolamento & purificação , Epistasia Genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Sonicação , Succinimidas/química
7.
Nat Genet ; 44(7): 765-9, 2012 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-22634754

RESUMO

To survey hepatitis B virus (HBV) integration in liver cancer genomes, we conducted massively parallel sequencing of 81 HBV-positive and 7 HBV-negative hepatocellular carcinomas (HCCs) and adjacent normal tissues. We found that HBV integration is observed more frequently in the tumors (86.4%) than in adjacent liver tissues (30.7%). Copy-number variations (CNVs) were significantly increased at HBV breakpoint locations where chromosomal instability was likely induced. Approximately 40% of HBV breakpoints within the HBV genome were located within a 1,800-bp region where the viral enhancer, X gene and core gene are located. We also identified recurrent HBV integration events (in ≥ 4 HCCs) that were validated by RNA sequencing (RNA-seq) and Sanger sequencing at the known and putative cancer-related TERT, MLL4 and CCNE1 genes, which showed upregulated gene expression in tumor versus normal tissue. We also report evidence that suggests that the number of HBV integrations is associated with patient survival.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Integração Viral/genética , Sequência de Bases , Instabilidade Cromossômica/genética , Ciclina E/genética , Variações do Número de Cópias de DNA/genética , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Feminino , Histona-Lisina N-Metiltransferase , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Oncogênicas/genética , RNA Viral/genética , Taxa de Sobrevida , Telomerase/genética
8.
Cell ; 148(1-2): 84-98, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265404

RESUMO

Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Humanos
9.
Nat Genet ; 43(7): 630-8, 2011 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-21685913

RESUMO

Mammalian genomes are viewed as functional organizations that orchestrate spatial and temporal gene regulation. CTCF, the most characterized insulator-binding protein, has been implicated as a key genome organizer. However, little is known about CTCF-associated higher-order chromatin structures at a global scale. Here we applied chromatin interaction analysis by paired-end tag (ChIA-PET) sequencing to elucidate the CTCF-chromatin interactome in pluripotent cells. From this analysis, we identified 1,480 cis- and 336 trans-interacting loci with high reproducibility and precision. Associating these chromatin interaction loci with their underlying epigenetic states, promoter activities, enhancer binding and nuclear lamina occupancy, we uncovered five distinct chromatin domains that suggest potential new models of CTCF function in chromatin organization and transcriptional control. Specifically, CTCF interactions demarcate chromatin-nuclear membrane attachments and influence proper gene expression through extensive cross-talk between promoters and regulatory elements. This highly complex nuclear organization offers insights toward the unifying principles that govern genome plasticity and function.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/metabolismo , Genes Reguladores , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fator de Ligação a CCCTC , Células Cultivadas , Cromatina/química , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/citologia , Epigenômica , Regulação da Expressão Gênica , Hibridização in Situ Fluorescente , Camundongos , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transcrição Gênica
10.
Genome Biol ; 11(2): R22, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20181287

RESUMO

Chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) is a new technology to study genome-wide long-range chromatin interactions bound by protein factors. Here we present ChIA-PET Tool, a software package for automatic processing of ChIA-PET sequence data, including linker filtering, mapping tags to reference genomes, identifying protein binding sites and chromatin interactions, and displaying the results on a graphical genome browser. ChIA-PET Tool is fast, accurate, comprehensive, user-friendly, and open source (available at http://chiapet.gis.a-star.edu.sg).


Assuntos
Imunoprecipitação da Cromatina , Cromatina/metabolismo , Análise de Sequência de DNA/métodos , Software , Sítios de Ligação/genética , Cromatina/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA