Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Cancer Surviv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635100

RESUMO

PURPOSE: Childhood cancer survivors are at risk for cardiac dysfunction and impaired physical performance, though underlying cellular mechanisms are not well studied. In this cross-sectional study, we examined the association between peripheral blood mitochondrial DNA copy number (mtDNA-CN, a proxy for mitochondrial function) and markers of performance impairment and cardiac dysfunction. METHODS: Whole-genome sequencing, validated by quantitative polymerase chain reaction, was used to estimate mtDNA-CN in 1720 adult survivors of childhood cancer (48.5% female; mean age = 30.7 years, standard deviation (SD) = 9.0). Multivariable logistic regression was performed to evaluate the associations between mtDNA-CN and exercise intolerance, walking inefficiency, and abnormal global longitudinal strain (GLS), adjusting for treatment exposures, age, sex, and race and ethnicity. RESULTS: The prevalence of exercise intolerance, walking inefficiency, and abnormal GLS among survivors was 25.7%, 10.7%, and 31.7%, respectively. Each SD increase of mtDNA-CN was associated with decreased odds of abnormal GLS (adjusted odds ratio (OR) = 0.88, p = 0.04) but was not associated with exercise intolerance (OR = 1.02, p = 0.76) or walking inefficiency (OR = 1.06, p = 0.46). Alkylating agent exposure was associated with increased odds of exercise intolerance (OR = 2.25, p < 0.0001), walking inefficiency (OR = 2.37, p < 0.0001), and abnormal GLS (OR = 1.78, p = 0.0002). CONCLUSIONS: Increased mtDNA-CN is associated with decreased odds of abnormal cardiac function in childhood cancer survivors. IMPLICATIONS FOR CANCER SURVIVORS: These findings demonstrate a potential role for mtDNA-CN as a biomarker of early cardiac dysfunction in this population.

2.
J Natl Cancer Inst ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38445706

RESUMO

BACKGROUND: Childhood cancer survivors are at high risk for morbidity and mortality and poor patient-reported outcomes, typically health-related-quality-of-life (HRQOL). However, associations between DNA methylation (DNAm)-based aging biomarkers and HRQOL have not been evaluated. METHODS: DNAm was generated with Infinium EPIC BeadChip on blood-derived DNA (median[range] for age at blood draw = 34.5[18.5-66.6] years) and HRQOL was assessed with age at survey (32.3[18.4-64.5] years) from 2,206 survivors in the St Jude Lifetime Cohort. DNAm-based aging biomarkers, including epigenetic age using multiple clocks (eg, GrimAge) and others (eg, DNAmB2M beta-2-microglobulin; DNAmADM: adrenomedullin), were derived from the DNAm Age Calculator (https://dnamage.genetics.ucla.edu). HRQOL was assessed using the Medical Outcomes Study 36-Item Short-Form Health Survey to capture eight domains, and physical and mental component summaries (PCS and MCS). General linear models evaluated associations between HRQOL and epigenetic age acceleration (EAA, eg, EAA_GrimAge) or other age-adjusted DNAm-based biomarkers (eg, ageadj_DNAmB2M) after adjusting for age at blood draw, sex, cancer treatments, and DNAm-based surrogate for smoking pack-years. All P values were 2-sided. RESULTS: Worse HRQOL was associated with greater EAA_GrimAge (PCS ß[95%CI]=-0.18[-0.251,-0.11] years, P = 1.85 × 10-5; and four individual HRQOL domains), followed by ageadj_DNAmB2M (PCS: -0.08[-0.124,-0.037], P = .003; and three individual HRQOL domains), and ageadj_DNAmADM (PCS: -0.082[-0.125,-0.039], P = .002; and two HRQOL domains). EAA_Hannum (Hannum clock) was not associated with any HRQOL. CONCLUSIONS: Overall and domain-specific measures of HRQOL are associated with DNAm measures of biological aging. Future longitudinal studies should test biological aging as a potential mechanism underlying the association between poor HRQOL and increased risk of clinically assessed adverse health outcomes.

3.
medRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38076942

RESUMO

Background: Large scale genomics projects have identified driver alterations for most childhood cancers that provide reliable biomarkers for clinical diagnosis and disease monitoring using targeted sequencing. However, there is lack of a comprehensive panel that matches the list of known driver genes. Here we fill this gap by developing SJPedPanel for childhood cancers. Results: SJPedPanel covers 5,275 coding exons of 357 driver genes, 297 introns frequently involved in rearrangements that generate fusion oncoproteins, commonly amplified/deleted regions (e.g., MYCN for neuroblastoma, CDKN2A and PAX5 for B-/T-ALL, and SMARCB1 for AT/RT), and 7,590 polymorphism sites for interrogating tumors with aneuploidy, such as hyperdiploid and hypodiploid B-ALL or 17q gain neuroblastoma. We used driver alterations reported from an established real-time clinical genomics cohort (n=253) to validate this gene panel. Among the 485 pathogenic variants reported, our panel covered 417 variants (86%). For 90 rearrangements responsible for oncogenic fusions, our panel covered 74 events (82%). We re-sequenced 113 previously characterized clinical specimens at an average depth of 2,500X using SJPedPanel and recovered 354 (91%) of the 389 reported pathogenic variants. We then investigated the power of this panel in detecting mutations from specimens with low tumor purity (as low as 0.1%) using cell line-based dilution experiments and discovered that this gene panel enabled us to detect ∼80% variants with allele fraction of 0.2%, while the detection rate decreases to ∼50% when the allele fraction is 0.1%. We finally demonstrate its utility in disease monitoring on clinical specimens collected from AML patients in morphologic remission. Conclusions: SJPedPanel enables the detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions for childhood cancers by targeted sequencing of ∼0.15% of human genome. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.

4.
Nat Commun ; 14(1): 8006, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110397

RESUMO

Developing synchronous bilateral Wilms tumor suggests an underlying (epi)genetic predisposition. Here, we evaluate this predisposition in 68 patients using whole exome or genome sequencing (n = 85 tumors from 61 patients with matched germline blood DNA), RNA-seq (n = 99 tumors), and DNA methylation analysis (n = 61 peripheral blood, n = 29 non-diseased kidney, n = 99 tumors). We determine the predominant events for bilateral Wilms tumor predisposition: 1)pre-zygotic germline genetic variants readily detectable in blood DNA [WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%), and BRCA-related genes (5%)] or 2)post-zygotic epigenetic hypermethylation at 11p15.5 H19/ICR1 that may require analysis of multiple tissue types for diagnosis. Of 99 total tumor specimens, 16 (16.1%) have 11p15.5 normal retention of imprinting, 25 (25.2%) have 11p15.5 copy neutral loss of heterozygosity, and 58 (58.6%) have 11p15.5 H19/ICR1 epigenetic hypermethylation (loss of imprinting). Here, we ascertain the epigenetic and genetic modes of bilateral Wilms tumor predisposition.


Assuntos
Neoplasias Renais , Tumor de Wilms , Criança , Humanos , Tumor de Wilms/genética , Tumor de Wilms/patologia , Genótipo , Metilação de DNA/genética , DNA , Neoplasias Renais/genética , Neoplasias Renais/patologia , Epigênese Genética , Impressão Genômica
5.
Lancet Oncol ; 24(10): 1147-1156, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37797633

RESUMO

BACKGROUND: Carriers of cancer predisposing variants are at an increased risk of developing subsequent malignant neoplasms among those who have survived childhood cancer. We aimed to investigate whether cancer predisposing variants contribute to the risk of subsequent malignant neoplasm-related late mortality (5 years or more after diagnosis). METHODS: In this analysis, data were included from two retrospective cohort studies, St Jude Lifetime Cohort (SJLIFE) and the Childhood Cancer Survivor Study (CCSS), with prospective follow-up of patients who were alive for at least 5 years after diagnosis with childhood cancer (ie, long-term childhood cancer survivors) with corresponding germline whole genome or whole exome sequencing data. Cancer predisposing variants affecting 60 genes associated with well-established autosomal-dominant cancer-predisposition syndromes were characterised. Subsequent malignant neoplasms were graded using the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) version 4.03 with modifications. Cause-specific late mortality was based on linkage with the US National Death Index and systematic cohort follow up. Fine-Gray subdistribution hazard models were used to estimate subsequent malignant neoplasm-related late mortality starting from the first biospecimen collection, treating non-subsequent malignant neoplasm-related deaths as a competing risk, adjusting for genetic ancestry, sex, age at diagnosis, and cancer treatment exposures. SJLIFE (NCT00760656) and CCSS (NCT01120353) are registered with ClinicalTrials.gov. FINDINGS: 12 469 (6172 male and 6297 female) participants were included, 4402 from the SJLIFE cohort (median follow-up time since collection of the first biospecimen 7·4 years [IQR 3·1-9·4]) and 8067 from the CCSS cohort (median follow-up time since collection of the first biospecimen 12·6 years [2·2-16·6]). 641 (5·1%) of 12 469 participants carried cancer predisposing variants (294 [6·7%] in the SJLIFE cohort and 347 [4·3%] in the CCSS cohort), which were significantly associated with an increased severity of subsequent malignant neoplasms (CTCAE grade ≥4 vs grade <4: odds ratio 2·15, 95% CI 1·18-4·19, p=0·0085). 263 (2·1%) subsequent malignant neoplasm-related deaths (44 [1·0%] in the SJLIFE cohort; and 219 [2·7%] in the CCSS cohort) and 426 (3·4%) other-cause deaths (103 [2·3%] in SJLIFE; and 323 [4·0%] in CCSS) occurred. Cumulative subsequent malignant neoplasm-related mortality at 10 years after the first biospecimen collection in carriers of cancer predisposing variants was 3·7% (95% CI 1·2-8·5) in SJLIFE and 6·9% (4·1-10·7) in CCSS versus 1·5% (1·0-2·1) in SJLIFE and 2·1% (1·7-2·5) in CCSS in non-carriers. Carrying a cancer predisposing variant was associated with an increased risk of subsequent malignant neoplasm-related mortality (SJLIFE: subdistribution hazard ratio 3·40 [95% CI 1·37-8·43]; p=0·0082; CCSS: 3·58 [2·27-5·63]; p<0·0001). INTERPRETATION: Identifying participants at increased risk of subsequent malignant neoplasms via genetic counselling and clinical genetic testing for cancer predisposing variants and implementing early personalised cancer surveillance and prevention strategies might reduce the substantial subsequent malignant neoplasm-related mortality burden. FUNDING: American Lebanese Syrian Associated Charities and US National Institutes of Health.


Assuntos
Sobreviventes de Câncer , Neoplasias , Criança , Humanos , Masculino , Feminino , Neoplasias/patologia , Estudos Retrospectivos , Seguimentos , Estudos Prospectivos , Fatores de Risco
6.
JAMA Netw Open ; 6(4): e2310325, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37115548

RESUMO

Importance: Certain cancer therapies are risk factors for epigenetic age acceleration (EAA) among survivors of childhood cancer, and EAA is associated with chronic health conditions (CHCs). However, small numbers of younger survivors (aged <20 years) previously evaluated have limited the ability to calculate EAA among this age group. Objective: To evaluate the change rate of epigenetic age (EA) and EAA in younger compared with older survivors and the possible association of EAA with early-onset obesity (aged <20 years), severity/burden of CHCs, and late mortality (>5 years from cancer diagnosis). Design, Setting, and Participants: Study participants were from the St Jude Lifetime Cohort, initiated in 2007 with ongoing follow-up. The present study was conducted from April 17, 2022, to March 23, 2023. Survivors in this cohort of European ancestry with DNA methylation data were included. Cross-sectional annual changes in EA and EAA were compared across 5 different chronologic age groups: age 0 to 9 (children), 10 to 19 (adolescents), 20 to 34 (younger adults), 35 to 49 (middle-aged adults), and greater than or equal to 50 (older adults) years. Logistic regression evaluated the association between EAA and early-onset obesity or severity/burden of CHCs. Cox proportional hazards regression assessed the association between EAA and late mortality. Main Outcomes and Measures: Early-onset obesity, severity/burden of CHCs (graded using the Common Terminology Criteria for Adverse Events (grade 1, mild; 2, moderate; 3, severe/disabling; 4, life-threatening) and were combined into high vs low severity/burden based on frequency and grade), and late mortality were the outcomes based on follow-up until April 2020. Expanded DNA methylation profiling increased the number of survivors younger than 20 years (n = 690). Epigenetic age was calculated primarily using the Levine clock, and EAA was derived from least squares regression of EA against chronologic age and was standardized to a z score (Levine EEA). Results: Among 2846 participants (median age, 30.3 [IQR, 9.3-41.5] years; 53% males), the cross-sectional annual change in EA_Levine was higher in children (1.63 years) and adolescents (1.14 years), and the adjusted least-squares mean of Levine EEA was lower in children (-0.22 years) and older adults (-1.70 years). Each 1-SD increase in Levine EEA was associated with increased risk of developing early-onset obesity (odds ratio [OR], 1.46; 95% CI, 1.19-1.78), high severity/burden of CHCs (OR, 1.13; 95% CI, 1.03-1.24), and late mortality (hazard ratio, 1.75; 95% CI, 1.35-2.26). Conclusions and Relevance: The findings of this study suggest that EAA measured in children and adolescent survivors of childhood cancer is associated with early-onset obesity, severity/burden of all CHCs, and late mortality. Evaluating EAA may help identify survivors of childhood cancer at increased risk for early-onset obesity, morbidity in general, and mortality.


Assuntos
Sobreviventes de Câncer , Neoplasias , Masculino , Pessoa de Meia-Idade , Humanos , Criança , Adolescente , Idoso , Adulto , Feminino , Neoplasias/epidemiologia , Neoplasias/genética , Estudos Transversais , Sobreviventes , Epigênese Genética , Obesidade/epidemiologia
7.
Nat Commun ; 14(1): 1739, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019972

RESUMO

Oncogenic fusions formed through chromosomal rearrangements are hallmarks of childhood cancer that define cancer subtype, predict outcome, persist through treatment, and can be ideal therapeutic targets. However, mechanistic understanding of the etiology of oncogenic fusions remains elusive. Here we report a comprehensive detection of 272 oncogenic fusion gene pairs by using tumor transcriptome sequencing data from 5190 childhood cancer patients. We identify diverse factors, including translation frame, protein domain, splicing, and gene length, that shape the formation of oncogenic fusions. Our mathematical modeling reveals a strong link between differential selection pressure and clinical outcome in CBFB-MYH11. We discover 4 oncogenic fusions, including RUNX1-RUNX1T1, TCF3-PBX1, CBFA2T3-GLIS2, and KMT2A-AFDN, with promoter-hijacking-like features that may offer alternative strategies for therapeutic targeting. We uncover extensive alternative splicing in oncogenic fusions including KMT2A-MLLT3, KMT2A-MLLT10, C11orf95-RELA, NUP98-NSD1, KMT2A-AFDN and ETV6-RUNX1. We discover neo splice sites in 18 oncogenic fusion gene pairs and demonstrate that such splice sites confer therapeutic vulnerability for etiology-based genome editing. Our study reveals general principles on the etiology of oncogenic fusions in childhood cancer and suggests profound clinical implications including etiology-based risk stratification and genome-editing-based therapeutics.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma , Causalidade , Proteínas de Fusão Oncogênica/genética
8.
Genome Biol ; 24(1): 64, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016431

RESUMO

BACKGROUND: The NSD2 p.E1099K (EK) mutation is shown to be enriched in patients with relapsed acute lymphoblastic leukemia (ALL), indicating a role in clonal evolution and drug resistance. RESULTS: To uncover 3D chromatin architecture-related mechanisms underlying drug resistance, we perform Hi-C on three B-ALL cell lines heterozygous for NSD2 EK. The NSD2 mutation leads to widespread remodeling of the 3D genome, most dramatically in terms of compartment changes with a strong bias towards A compartment shifts. Systematic integration of the Hi-C data with previously published ATAC-seq, RNA-seq, and ChIP-seq data show an expansion in H3K36me2 and a shrinkage in H3K27me3 within A compartments as well as increased gene expression and chromatin accessibility. These results suggest that NSD2 EK plays a prominent role in chromatin decompaction through enrichment of H3K36me2. In contrast, we identify few changes in intra-topologically associating domain activity. While compartment changes vary across cell lines, a common core of decompacting loci are shared, driving the expression of genes/pathways previously implicated in drug resistance. We further perform RNA sequencing on a cohort of matched diagnosis/relapse ALL patients harboring the relapse-specific NSD2 EK mutation. Changes in patient gene expression upon relapse significantly correlate with core compartment changes, further implicating the role of NSD2 EK in genome decompaction. CONCLUSIONS: In spite of cell-context-dependent changes mediated by EK, there appears to be a shared transcriptional program dependent on compartment shifts which could explain phenotypic differences across EK cell lines. This core program is an attractive target for therapeutic intervention.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Repressoras , Criança , Humanos , Cromatina , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
9.
Res Sq ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993649

RESUMO

This study comprehensively evaluated the landscape of genetic and epigenetic events that predispose to synchronous bilateral Wilms tumor (BWT). We performed whole exome or whole genome sequencing, total-strand RNA-seq, and DNA methylation analysis using germline and/or tumor samples from 68 patients with BWT from St. Jude Children's Research Hospital and the Children's Oncology Group. We found that 25/61 (41%) of patients evaluated harbored pathogenic or likely pathogenic germline variants, with WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%) and the BRCA-related genes (5%) BRCA1, BRCA2, and PALB2 being most common. Germline WT1 variants were strongly associated with somatic paternal uniparental disomy encompassing the 11p15.5 and 11p13/WT1 loci and subsequent acquired pathogenic CTNNB1 variants. Somatic coding variants or genome-wide copy number alterations were almost never shared between paired synchronous BWT, suggesting that the acquisition of independent somatic variants leads to tumor formation in the context of germline or early embryonic, post-zygotic initiating events. In contrast, 11p15.5 status (loss of heterozygosity, loss or retention of imprinting) was shared among paired synchronous BWT in all but one case. The predominant molecular events for BWT predisposition include pathogenic germline variants or post-zygotic epigenetic hypermethylation at the 11p15.5 H19/ICR1 locus (loss of imprinting). This study demonstrates that post-zygotic somatic mosaicism for 11p15.5 hypermethylation/loss of imprinting is the single most common initiating molecular event predisposing to BWT. Evidence of somatic mosaicism for 11p15.5 loss of imprinting was detected in leukocytes of a cohort of BWT patients and long-term survivors, but not in unilateral Wilms tumor patients and long-term survivors or controls, further supporting the hypothesis that post-zygotic 11p15.5 alterations occurred in the mesoderm of patients who go on to develop BWT. Due to the preponderance of BWT patients with demonstrable germline or early embryonic tumor predisposition, BWT exhibits a unique biology when compared to unilateral Wilms tumor and therefore warrants continued refinement of its own treatment-relevant biomarkers which in turn may inform directed treatment strategies in the future.

10.
Clin Epigenetics ; 15(1): 32, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855205

RESUMO

BACKGROUND: DNA methylation (DNAm) plays an important role in lipid metabolism, however, no epigenome-wide association study (EWAS) of lipid levels has been conducted among childhood cancer survivors. Here, we performed EWAS analysis with longitudinally collected blood lipid data from survivors in the St. Jude lifetime cohort study. METHODS: Among 2052 childhood cancer survivors of European ancestry (EA) and 370 survivors of African ancestry (AA), four types of blood lipids, including high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TG), were measured during follow-up beyond 5-years from childhood cancer diagnosis. For the exposure EWAS (i.e., lipids measured before blood draw for DNAm), the DNAm level was an outcome variable and each of the blood lipid level was an exposure variable; vice versa for the outcome EWAS (i.e., lipids measured after blood draw for DNAm). RESULTS: Among EA survivors, we identified 43 lipid-associated CpGs in the HDL (n = 7), TC (n = 3), and TG (n = 33) exposure EWAS, and 106 lipid-associated CpGs in the HDL (n = 5), LDL (n = 3), TC (n = 4), and TG (n = 94) outcome EWAS. Among AA survivors, we identified 15 lipid-associated CpGs in TG exposure (n = 6), HDL (n = 1), LDL (n = 1), TG (n = 5) and TC (n = 2) outcome EWAS with epigenome-wide significance (P < 9 × 10-8). There were no overlapping lipids-associated CpGs between exposure and outcome EWAS among EA and AA survivors, suggesting that the DNAm changes of different CpGs could be the cause or consequence of blood lipid levels. In the meta-EWAS, 12 additional CpGs reached epigenome-wide significance. Notably, 32 out of 74 lipid-associated CpGs showed substantial heterogeneity (Phet < 0.1 or I2 > 70%) between EA and AA survivors, highlighting differences in DNAm markers of blood lipids between populations with diverse genetic ancestry. Ten lipid-associated CpGs were cis-expression quantitative trait methylation with their DNAm levels associated with the expression of corresponding genes, out of which seven were negatively associated. CONCLUSIONS: We identified distinct signatures of DNAm for blood lipids as exposures or outcomes and between EA and AA survivors, revealing additional genes involved in lipid metabolism and potential novel targets for controlling blood lipids in childhood cancer survivors.


Assuntos
Sobreviventes de Câncer , Neoplasias , Criança , Humanos , Metilação de DNA , Estudos de Coortes , Neoplasias/genética , Lipídeos , Sobreviventes , Triglicerídeos , Lipoproteínas HDL
11.
Cancer Discov ; 13(4): 844-857, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36751942

RESUMO

We present the first comprehensive investigation of clonal hematopoiesis (CH) in 2,860 long-term survivors of pediatric cancer with a median follow-up time of 23.5 years. Deep sequencing over 39 CH-related genes reveals mutations in 15% of the survivors, significantly higher than the 8.5% in 324 community controls. CH in survivors is associated with exposures to alkylating agents, radiation, and bleomycin. Therapy-related CH shows significant enrichment in STAT3, characterized as a CH gene specific to survivors of Hodgkin lymphoma, and TP53. Single-cell profiling of peripheral blood samples revealed STAT3 mutations predominantly present in T cells and contributed by SBS25, a mutational signature associated with procarbazine exposure. Serial sample tracking reveals that larger clone size is a predictor for future expansion of age-related CH clones, whereas therapy-related CH remains stable decades after treatment. These data depict the distinct dynamics of these CH subtypes and support the need for longitudinal monitoring to determine the potential contribution to late effects. SIGNIFICANCE: This first comprehensive CH analysis in long-term survivors of pediatric cancer presents the elevated prevalence and therapy exposures/diagnostic spectrum associated with CH. Due to the contrasting dynamics of clonal expansion for age-related versus therapy-related CH, longitudinal monitoring is recommended to ascertain the long-term effects of therapy-induced CH in pediatric cancer survivors. See related commentary by Collord and Behjati, p. 811. This article is highlighted in the In This Issue feature, p. 799.


Assuntos
Hematopoiese Clonal , Doença de Hodgkin , Humanos , Criança , Hematopoese/genética , Mutação , Doença de Hodgkin/genética , Doença de Hodgkin/terapia , Sobreviventes
13.
JAMA Netw Open ; 5(8): e2225647, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35939300

RESUMO

Importance: Studies focusing on genetic susceptibility of childhood Hodgkin lymphoma (HL) are limited. Objectives: To identify genetic variants associated with childhood-onset HL vs adult-onset HL. Design, Setting, and Participants: This genetic association study was performed with 3 cohorts: the St Jude Lifetime Cohort Study (SJLIFE), initiated in 2007 with ongoing follow-up, and the original and expansion cohorts of the Childhood Cancer Survivor Study (CCSS), initiated in the 1990s with ongoing follow-up. Results of these genome-wide association studies (GWASs) were combined via meta-analysis. Data were analyzed from June 2021 to June 2022. Main Outcomes and Measures: Childhood HL was the focused outcome. Single-nucleotide variant (SNV, formerly single-nucleotide polymorphism) array genotyping and imputation were conducted for the CCSS original cohort, and whole-genome sequencing was performed for the SJLIFE and CCSS expansion cohort. Results: A total of 1286 HL cases (mean diagnosis [SD] age, 14.6 [3.9] years), 6193 non-HL childhood cancer cases, and 369 noncancer controls, all of European ancestry, were included in the analysis. Using step-wise conditional logistic regression, the odds ratios (ORs) for each of the 3 independent SNVs identified in the human leukocyte antigen (HLA) locus were 1.80 (95% CI, 1.59-2.03; P = 2.14 × 10-21) for rs28383311, 1.53 (95% CI, 1.37-1.70; P = 2.05 × 10-14) for rs3129198, and 1.51 (95% CI, 1.35-1.69; P = 6.21 × 10-13) for rs3129890. Further HLA imputation revealed 9 alleles and 55 amino acid changes that potentially conferred HL susceptibility. In addition, 5 non-HLA loci were identified: (1) rs1432297 (OR, 1.29; 95% CI, 1.18-1.41; P = 2.5 × 10-8; r2 = 0.55; D' = 0.75 with previously reported rs1432295, REL); (2) rs2757647 (OR, 1.30; 95% CI, 1.18-1.42; P = 3.5 × 10-8; r2 = 0.59; D' = 0.83 with previously reported rs6928977, AHI1); (3) rs13279159 (OR, 1.33; 95% CI, 1.20-1.47; P = 1.7 × 10-8; r2 = 0.75; D' = 1.00 with previously reported rs2019960, PVT1); (4) rs3824662 (OR, 1.52; 95% CI, 1.33-1.73; P = 3.9 × 10-10; r2 = 0.91; D' = 1.00 with previously reported rs3781093, GATA3); and (5) rs117953624 (OR, 1.98; 95% CI, 1.56-2.51; P = 1.5 × 10-8; minor allele frequency, 0.02), a novel uncommon SNV mapped to PDGFD. Twelve of 18 previously reported genome-wide significant non-HLA SNVs (67%) were replicated with statistically significant results. Conclusions and Relevance: In this genetic association study, a predominantly common and potentially unique genetic etiology was found between childhood-onset and adulthood-onset HL.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Hodgkin , Adolescente , Adulto , Humanos , Estudos de Coortes , Antígenos HLA/genética , Doença de Hodgkin/genética
14.
Acta Neuropathol Commun ; 10(1): 80, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642016

RESUMO

The majority of diffuse midline gliomas, H3 K27-altered (DMG-H3 K27-a), are infiltrating pediatric brain tumors that arise in the pons with no effective treatment. To understand how clonal evolution contributes to the tumor's invasive spread, we performed exome sequencing and SNP array profiling on 49 multi-region autopsy samples from 11 patients with pontine DMG-H3 K27-a enrolled in a phase I clinical trial of PDGFR inhibitor crenolanib. For each patient, a phylogenetic tree was constructed by testing multiple possible clonal evolution models to select the one consistent with somatic mutations and copy number variations across all tumor regions. The tree was then used to deconvolute subclonal composition and prevalence at each tumor region to study convergent evolution and invasion patterns. Somatic variants in the PI3K pathway, a late event, are enriched in our cohort, affecting 70% of patients. Convergent evolution of PI3K at distinct phylogenetic branches was detected in 40% of the patients. 24 (~ 50%) of tumor regions were occupied by subclones of mixed lineages with varying molecular ages, indicating multiple waves of invasion across the pons and extrapontine. Subclones harboring a PDGFRA amplicon, including one that amplified a PDGRFAY849C mutant allele, were detected in four patients; their presence in extrapontine tumor and normal brain samples imply their involvement in extrapontine invasion. Our study expands the current knowledge on tumor invasion patterns in DMG-H3 K27-a, which may inform the design of future clinical trials.


Assuntos
Variações do Número de Cópias de DNA , Glioma , Criança , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Histonas/genética , Humanos , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Filogenia , Inibidores de Proteínas Quinases
15.
J Natl Cancer Inst ; 114(8): 1109-1116, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35698272

RESUMO

BACKGROUND: Adult survivors of childhood cancer are at increased risk of cardiac late effects. METHODS: Using whole-genome sequencing data from 1870 survivors of European ancestry in the St. Jude Lifetime Cohort (SJLIFE) study, genetic variants were examined for association with ejection fraction (EF) and clinically assessed cancer therapy-induced cardiac dysfunction (CCD). Statistically significant findings were validated in 301 SJLIFE survivors of African ancestry and 4020 survivors of European ancestry from the Childhood Cancer Survivor Study. All statistical tests were 2-sided. RESULTS: A variant near KCNK17 showed genome-wide significant association with EF (rs2815063-A: EF reduction = 1.6%; P = 2.1 × 10-8) in SJLIFE survivors of European ancestry, which replicated in SJLIFE survivors of African ancestry (EF reduction = 1.5%; P = .004). The rs2815063-A also showed a 1.80-fold (P = .008) risk of severe or disabling or life-threatening CCD and replicated in 4020 Childhood Cancer Survivor Study survivors of European ancestry (odds ratio = 1.40; P = .04). Notably, rs2815063-A was specifically associated among survivors exposed to doxorubicin only, with a stronger effect on EF (3.3% EF reduction) and CCD (2.97-fold). Whole blood DNA methylation data in 1651 SJLIFE survivors of European ancestry showed statistically significant correlation of rs2815063-A with dysregulation of KCNK17 enhancers (false discovery rate <5%), which replicated in 263 survivors of African ancestry. Consistently, the rs2815063-A was associated with KCNK17 downregulation based on RNA sequencing of 75 survivors. CONCLUSIONS: Leveraging the 2 largest cohorts of childhood cancer survivors in North America and survivor-specific polygenomic functional data, we identified a novel risk locus for CCD, which showed specificity with doxorubicin-induced cardiac dysfunction and highlighted dysregulation of KCNK17 as the likely molecular mechanism underlying this genetic association.


Assuntos
Sobreviventes de Câncer , Cardiopatias , Neoplasias , Adulto , Criança , Estudos de Coortes , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/epidemiologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
17.
Genome Med ; 14(1): 32, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35313970

RESUMO

BACKGROUND: Increased epigenetic age acceleration (EAA) in survivors of childhood cancer is associated with specific treatment exposures, unfavorable health behaviors, and presence of certain chronic health conditions. To better understand inter-individual variability, we investigated the genetic basis underlying EAA. METHODS: Genome-wide association studies of EAA based on multiple epigenetic clocks (Hannum, Horvath, PhenoAge, and GrimAge) were performed. MethylationEPIC BeadChip array and whole-genome sequencing data were generated with blood-derived DNA from participants in the St. Jude Lifetime Cohort Study (discovery: 2138 pre-existing and 502 newly generated data, all survivors; exploratory: 282 community controls). Linear regression models were fit for each epigenetic age against the allelic dose of each genetic variant, adjusting for age at sampling, sex, and cancer treatment exposures. Fixed-effects meta-analysis was used to combine summary statistics from two discovery data sets. LD (Linkage disequilibrium) score regression was used to estimate single-nucleotide polymorphism (SNP)-based heritability. RESULTS: For EAA-Horvath, a genome-wide significant association was mapped to the SELP gene with the strongest SNP rs732314 (meta-GWAS: ß=0.57, P=3.30×10-11). Moreover, the stratified analysis of the association between rs732314 and EAA-Horvath showed a substantial heterogeneity between children and adults (meta-GWAS: ß=0.97 vs. 0.51, I2=73.1%) as well as between survivors with and without chest/abdominal/pelvic-RT exposure (ß=0.64 vs. 0.31, I2=66.3%). For EAA-Hannum, an association was mapped to the HLA locus with the strongest SNP rs28366133 (meta-GWAS: ß=0.78, P=3.78×10-11). There was no genome-wide significant hit for EAA-PhenoAge or EAA-GrimAge. Interestingly, among community controls, rs732314 was associated with EAA-Horvath (ß=1.09, P=5.43×10-5), whereas rs28366133 was not associated with EAA-Hannum (ß=0.21, P=0.49). The estimated heritability was 0.33 (SE=0.20) for EAA-Horvath and 0.17 (SE=0.23) for EAA-Hannum, but close to zero for EAA-PhenoAge and EAA-GrimAge. CONCLUSIONS: We identified novel genetic variants in the SELP gene and HLA region associated with EAA-Horvath and EAA-Hannum, respectively, among survivors of childhood cancer. The new genetic variants in combination with other replicated known variants can facilitate the identification of survivors at higher risk in developing accelerated aging and potentially inform drug targets for future intervention strategies among vulnerable survivors.


Assuntos
Envelhecimento , Sobreviventes de Câncer , Epigênese Genética , Neoplasias , Adulto , Envelhecimento/genética , Criança , Estudos de Coortes , Metilação de DNA , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Neoplasias/genética , Sobreviventes
18.
Epigenetics ; 17(11): 1389-1403, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35109748

RESUMO

Social epigenomics is an emerging field in which social scientist collaborate with computational biologists, especially epigeneticists, to address the underlying pathway for biological embedding of life experiences. This social epigenomics study included long-term childhood cancer survivors enrolled in the St. Jude Lifetime Cohort. DNA methylation (DNAm) data were generated using the Illumina EPIC BeadChip, and three social determinants of health (SDOH) factors were assessed: self-reported educational attainment, personal income, and an area deprivation index based on census track data. An epigenome-wide association study (EWAS) was performed to evaluate the relation between DNAm at each 5'-cytosine-phosphate-guanine-3' (CpG) site and each SDOH factor based on multivariable linear regression models stratified by ancestry (European ancestry, n = 1,618; African ancestry, n = 258). EWAS among survivors of European ancestry identified 130 epigenome-wide significant SDOH-CpG associations (P < 9 × 10-8), 25 of which were validated in survivors of African ancestry (P < 0.05). Thirteen CpGs were associated with all three SDOH factors and resided at pleiotropic loci in cigarette smoking-related genes (e.g., CLDND1 and CPOX). After accounting for smoking and body mass index, these associations remained significant with attenuated effect sizes. Seven of 13 CpGs were associated with gene expression level based on 57 subsamples with blood RNA sequencing data available. In conclusion, DNAm signatures, many resembling the effect of tobacco use, were associated with SDOH factors among survivors of childhood cancer, thereby suggesting that biologically distal SDOH factors influence health behaviours or related factors, the epigenome, and subsequently survivors' health.


Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Criança , Metilação de DNA , Epigênese Genética , Determinantes Sociais da Saúde , Estudo de Associação Genômica Ampla , Neoplasias/genética , Citosina , Guanina , Fosfatos , Ilhas de CpG
19.
Blood Cancer Discov ; 2(6): 586-599, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34778799

RESUMO

Genomic characterization of pediatric patients with acute myeloid leukemia (AML) has led to the discovery of somatic mutations with prognostic implications. Although gene-expression profiling can differentiate subsets of pediatric AML, its clinical utility in risk stratification remains limited. Here, we evaluate gene expression, pathogenic somatic mutations, and outcome in a cohort of 435 pediatric patients with a spectrum of pediatric myeloid-related acute leukemias for biological subtype discovery. This analysis revealed 63 patients with varying immunophenotypes that span a T-lineage and myeloid continuum designated as acute myeloid/T-lymphoblastic leukemia (AMTL). Within AMTL, two patient subgroups distinguished by FLT3-ITD and PRC2 mutations have different outcomes, demonstrating the impact of mutational composition on survival. Across the cohort, variability in outcomes of patients within isomutational subsets is influenced by transcriptional identity and the presence of a stem cell-like gene-expression signature. Integration of gene expression and somatic mutations leads to improved risk stratification. SIGNIFICANCE: Immunophenotype and somatic mutations play a significant role in treatment approach and risk stratification of acute leukemia. We conducted an integrated genomic analysis of pediatric myeloid malignancies and found that a combination of genetic and transcriptional readouts was superior to immunophenotype and genomic mutations in identifying biological subtypes and predicting outcomes. This article is highlighted in the In This Issue feature, p. 549.


Assuntos
Leucemia Mieloide Aguda , Criança , Perfilação da Expressão Gênica , Genômica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Mutação/genética , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA