Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Adv ; 10(20): eadk9076, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748792

RESUMO

Acute myeloid leukemia (AML) driven by the activation of EVI1 due to chromosome 3q26/MECOM rearrangements is incurable. Because transcription factors such as EVI1 are notoriously hard to target, insight into the mechanism by which EVI1 drives myeloid transformation could provide alternative avenues for therapy. Applying protein folding predictions combined with proteomics technologies, we demonstrate that interaction of EVI1 with CTBP1 and CTBP2 via a single PLDLS motif is indispensable for leukemic transformation. A 4× PLDLS repeat construct outcompetes binding of EVI1 to CTBP1 and CTBP2 and inhibits proliferation of 3q26/MECOM rearranged AML in vitro and in xenotransplant models. This proof-of-concept study opens the possibility to target one of the most incurable forms of AML with specific EVI1-CTBP inhibitors. This has important implications for other tumor types with aberrant expression of EVI1 and for cancers transformed by different CTBP-dependent oncogenic transcription factors.


Assuntos
Oxirredutases do Álcool , Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Proteína do Locus do Complexo MDS1 e EVI1 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Humanos , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/genética , Ligação Proteica , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Hemasphere ; 7(11): e969, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37953829

RESUMO

Blood comprises a wide array of specialized cells, all of which share the same genetic information and ultimately derive from the same precursor, the hematopoietic stem cell (HSC). This diversity of phenotypes is underpinned by unique transcriptional programs gradually acquired in the process known as hematopoiesis. Spatiotemporal regulation of gene expression depends on many factors, but critical among them are enhancers-sequences of DNA that bind transcription factors and increase transcription of genes under their control. Thus, hematopoiesis involves the activation of specific enhancer repertoires in HSCs and their progeny, driving the expression of sets of genes that collectively determine morphology and function. Disruption of this tightly regulated process can have catastrophic consequences: in hematopoietic malignancies, dysregulation of transcriptional control by enhancers leads to misexpression of oncogenes that ultimately drive transformation. This review attempts to provide a basic understanding of enhancers and their role in transcriptional regulation, with a focus on normal and malignant hematopoiesis. We present examples of enhancers controlling master regulators of hematopoiesis and discuss the main mechanisms leading to enhancer dysregulation in leukemia and lymphoma.

3.
Haematologica ; 108(9): 2316-2330, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475518

RESUMO

Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.


Assuntos
Deficiência de GATA2 , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Criança , Humanos , Camundongos , Animais , Deficiência de GATA2/genética , Síndromes Mielodisplásicas/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/patologia , Células-Tronco Hematopoéticas/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo
4.
Blood ; 140(8): 875-888, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35709354

RESUMO

Detailed genomic and epigenomic analyses of MECOM (the MDS1 and EVI1 complex locus) have revealed that inversion or translocation of chromosome 3 drives inv(3)/t(3;3) myeloid leukemias via structural rearrangement of an enhancer that upregulates transcription of EVI1. Here, we identify a novel, previously unannotated oncogenic RNA-splicing derived isoform of EVI1 that is frequently present in inv(3)/t(3;3) acute myeloid leukemia (AML) and directly contributes to leukemic transformation. This EVI1 isoform is generated by oncogenic mutations in the core RNA splicing factor SF3B1, which is mutated in >30% of inv(3)/t(3;3) myeloid neoplasm patients and thereby represents the single most commonly cooccurring genomic alteration in inv(3)/t(3;3) patients. SF3B1 mutations are statistically uniquely enriched in inv(3)/t(3;3) myeloid neoplasm patients and patient-derived cell lines compared with other forms of AML and promote mis-splicing of EVI1 generating an in-frame insertion of 6 amino acids at the 3' end of the second zinc finger domain of EVI1. Expression of this EVI1 splice variant enhanced the self-renewal of hematopoietic stem cells, and introduction of mutant SF3B1 in mice bearing the humanized inv(3)(q21q26) allele resulted in generation of this novel EVI1 isoform in mice and hastened leukemogenesis in vivo. The mutant SF3B1 spliceosome depends upon an exonic splicing enhancer within EVI1 exon 13 to promote usage of a cryptic branch point and aberrant 3' splice site within intron 12 resulting in the generation of this isoform. These data provide a mechanistic basis for the frequent cooccurrence of SF3B1 mutations as well as new insights into the pathogenesis of myeloid leukemias harboring inv(3)/t(3;3).


Assuntos
Leucemia Mieloide Aguda , Proto-Oncogenes , Animais , Inversão Cromossômica , Cromossomos Humanos Par 3/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Proto-Oncogenes/genética , Fatores de Transcrição/metabolismo
5.
Blood ; 139(1): 87-103, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34320176

RESUMO

Biallelic mutations of the CEBPA gene (CEBPAbi) define a distinct entity associated with favorable prognosis; however, the role of monoallelic mutations (CEBPAsm) is poorly understood. We retrospectively analyzed 4708 adults with acute myeloid leukemia (AML) who had been recruited into the Study Alliance Leukemia trials, to investigate the prognostic impact of CEBPAsm. CEBPA mutations were identified in 240 patients (5.1%): 131 CEBPAbi and 109 CEBPAsm (60 affecting the N-terminal transactivation domains [CEBPAsmTAD] and 49 the C-terminal DNA-binding or basic leucine zipper region [CEBPAsmbZIP]). Interestingly, patients carrying CEBPAbi or CEBPAsmbZIP shared several clinical factors: they were significantly younger (median, 46 and 50 years, respectively) and had higher white blood cell (WBC) counts at diagnosis (median, 23.7 × 109/L and 35.7 × 109/L) than patients with CEBPAsmTAD (median age, 63 years, median WBC 13.1 × 109/L; P < .001). Co-mutations were similar in both groups: GATA2 mutations (35.1% CEBPAbi; 36.7% CEBPAsmbZIP vs 6.7% CEBPAsmTAD; P < .001) or NPM1 mutations (3.1% CEBPAbi; 8.2% CEBPAsmbZIP vs 38.3% CEBPAsmTAD; P < .001). CEBPAbi and CEBPAsmbZIP, but not CEBPAsmTAD were associated with significantly improved overall (OS; median 103 and 63 vs 13 months) and event-free survival (EFS; median, 20.7 and 17.1 months vs 5.7 months), in univariate and multivariable analyses. Additional analyses revealed that the clinical and molecular features as well as the favorable survival were confined to patients with in-frame mutations in bZIP (CEBPAbZIP-inf). When patients were classified according to CEBPAbZIP-inf and CEBPAother (including CEBPAsmTAD and non-CEBPAbZIP-inf), only patients bearing CEBPAbZIP-inf showed superior complete remission rates and the longest median OS and EFS, arguing for a previously undefined prognostic role of this type of mutation.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Leucemia Mieloide Aguda/genética , Mutação , Adulto , Idoso , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Feminino , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Ligação Proteica , Estudos Retrospectivos , Análise de Sobrevida
6.
Blood Adv ; 6(5): 1406-1419, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-34814180

RESUMO

The transcription factor C/EBPa initiates the neutrophil gene expression program in the bone marrow (BM). Knockouts of the Cebpa gene or its +37kb enhancer in mice show 2 major findings: (1) neutropenia in BM and blood; (2) decrease in long-term hematopoietic stem cell (LT-HSC) numbers. Whether the latter finding is cell-autonomous (intrinsic) to the LT-HSCs or an extrinsic event exerted on the stem cell compartment remained an open question. Flow cytometric analysis of the Cebpa +37kb enhancer knockout model revealed that the reduction in LT-HSC numbers observed was proportional to the degree of neutropenia. Single-cell transcriptomics of wild-type (WT) mouse BM showed that Cebpa is predominantly expressed in early myeloid-biased progenitors but not in LT-HSCs. These observations suggest that the negative effect on LT-HSCs is an extrinsic event caused by neutropenia. We transplanted whole BMs from +37kb enhancer-deleted mice and found that 40% of the recipient mice acquired full-blown neutropenia with severe dysplasia and a significant reduction in the total LT-HSC population. The other 60% showed initial signs of myeloid differentiation defects and dysplasia when they were sacrificed, suggesting they were in an early stage of the same pathological process. This phenotype was not seen in mice transplanted with WT BM. Altogether, these results indicate that Cebpa enhancer deletion causes cell-autonomous neutropenia, which reprograms and disturbs the quiescence of HSCs, leading to a systemic impairment of the hematopoietic process.


Assuntos
Hematopoese , Neutropenia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Knockout , Neutropenia/genética , Fatores de Transcrição/metabolismo
7.
Int J Cancer ; 150(4): 617-625, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34591983

RESUMO

A distinct group of colorectal carcinomas (CRCs) referred to as the "CpG island methylator phenotype" (CIMP) shows an extremely high incidence of de novo DNA methylation and may share common pathological, clinical or molecular features. However, there is limited consensus about which CpG islands (CGIs) define a CIMP, particularly in microsatellite stable (MSS) carcinomas. To study this phenotype in a systematic manner, we analyzed genome-wide CGI DNA methylation profiles of 19 MSS CRC using methyl-CpG immunoprecipitation (MCIp) and hybridization on 244K CGI oligonucleotide microarrays, determined KRAS and BRAF mutation status and compared disease-related DNA methylation changes to chromosomal instability as detected by microarray-based comparative genomic hybridization. Results were validated using mass spectrometry analysis of bisulfite-converted DNA at a subset of 76 individual CGIs in 120 CRC and 43 matched normal tissue samples. Both genome-wide profiling and CpG methylation fine mapping segregated a group of CRC showing pronounced and frequent de novo DNA methylation of a distinct group of CGIs that only partially overlapped with previously established classifiers. The CIMP group defined in our study revealed significant association with colon localization, either KRAS or BRAF mutation, and mostly minor chromosomal losses but no association with known histopathological features. Our data provide a basis for defining novel marker panels that may enable a more reliable classification of CIMP in all CRCs, independently of the MS status.


Assuntos
Neoplasias Colorretais/genética , Ilhas de CpG , Metilação de DNA , Instabilidade de Microssatélites , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
8.
Nat Commun ; 12(1): 5679, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584081

RESUMO

Chromosomal rearrangements are a frequent cause of oncogene deregulation in human malignancies. Overexpression of EVI1 is found in a subgroup of acute myeloid leukemia (AML) with 3q26 chromosomal rearrangements, which is often therapy resistant. In AMLs harboring a t(3;8)(q26;q24), we observed the translocation of a MYC super-enhancer (MYC SE) to the EVI1 locus. We generated an in vitro model mimicking a patient-based t(3;8)(q26;q24) using CRISPR-Cas9 technology and demonstrated hyperactivation of EVI1 by the hijacked MYC SE. This MYC SE contains multiple enhancer modules, of which only one recruits transcription factors active in early hematopoiesis. This enhancer module is critical for EVI1 overexpression as well as enhancer-promoter interaction. Multiple CTCF binding regions in the MYC SE facilitate this enhancer-promoter interaction, which also involves a CTCF binding site upstream of the EVI1 promoter. We hypothesize that this CTCF site acts as an enhancer-docking site in t(3;8) AML. Genomic analyses of other 3q26-rearranged AML patient cells point to a common mechanism by which EVI1 uses this docking site to hijack enhancers active in early hematopoiesis.


Assuntos
Fator de Ligação a CCCTC/genética , Elementos Facilitadores Genéticos/genética , Leucemia Mieloide/genética , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proto-Oncogenes/genética , Doença Aguda , Fator de Ligação a CCCTC/metabolismo , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 8/genética , Regulação Leucêmica da Expressão Gênica , Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hibridização in Situ Fluorescente/métodos , Células K562 , Cariotipagem , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Translocação Genética
9.
Cancer Discov ; 11(11): 2868-2883, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33980539

RESUMO

In acute myeloid leukemia (AML) with inv(3)(q21;q26) or t(3;3)(q21;q26), a translocated GATA2 enhancer drives oncogenic expression of EVI1. We generated an EVI1-GFP AML model and applied an unbiased CRISPR/Cas9 enhancer scan to uncover sequence motifs essential for EVI1 transcription. Using this approach, we pinpointed a single regulatory element in the translocated GATA2 enhancer that is critically required for aberrant EVI1 expression. This element contained a DNA-binding motif for the transcription factor MYB, which specifically occupied this site at the translocated allele and was dispensable for GATA2 expression. MYB knockout as well as peptidomimetic blockade of CBP/p300-dependent MYB functions resulted in downregulation of EVI1 but not of GATA2. Targeting MYB or mutating its DNA-binding motif within the GATA2 enhancer resulted in myeloid differentiation and cell death, suggesting that interference with MYB-driven EVI1 transcription provides a potential entry point for therapy of inv(3)/t(3;3) AMLs. SIGNIFICANCE: We show a novel paradigm in which chromosomal aberrations reveal critical regulatory elements that are nonfunctional at their endogenous locus. This knowledge provides a rationale to develop new compounds to selectively interfere with oncogenic enhancer activity.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Elementos Facilitadores Genéticos , Genes myb , Leucemia Mieloide Aguda , Translocação Genética , Fator de Transcrição GATA2 , Humanos , Leucemia Mieloide Aguda/genética , Proteína do Locus do Complexo MDS1 e EVI1 , Oncogenes
10.
Blood ; 138(2): 160-177, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831168

RESUMO

Transcriptional deregulation is a central event in the development of acute myeloid leukemia (AML). To identify potential disturbances in gene regulation, we conducted an unbiased screen of allele-specific expression (ASE) in 209 AML cases. The gene encoding GATA binding protein 2 (GATA2) displayed ASE more often than any other myeloid- or cancer-related gene. GATA2 ASE was strongly associated with CEBPA double mutations (DMs), with 95% of cases presenting GATA2 ASE. In CEBPA DM AML with GATA2 mutations, the mutated allele was preferentially expressed. We found that GATA2 ASE was a somatic event lost in complete remission, supporting the notion that it plays a role in CEBPA DM AML. Acquisition of GATA2 ASE involved silencing of 1 allele via promoter methylation and concurrent overactivation of the other allele, thereby preserving expression levels. Notably, promoter methylation was also lost in remission along with GATA2 ASE. In summary, we propose that GATA2 ASE is acquired by epigenetic mechanisms and is a prerequisite for the development of AML with CEBPA DMs. This finding constitutes a novel example of an epigenetic hit cooperating with a genetic hit in the pathogenesis of AML.


Assuntos
Alelos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Epigênese Genética , Fator de Transcrição GATA2/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Mutação/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Indução de Remissão , Adulto Jovem
11.
Blood ; 136(2): 224-234, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32219447

RESUMO

Acute myeloid leukemia (AML) with inv(3)/t(3;3)(q21q26) is a distinct World Health Organization recognized entity, characterized by its aggressive course and poor prognosis. In this subtype of AML, the translocation of a GATA2 enhancer (3q21) to MECOM (3q26) results in overexpression of the MECOM isoform EVI1 and monoallelic expression of GATA2 from the unaffected allele. The full-length MECOM transcript, MDS1-EVI1, is not expressed as the result of the 3q26 rearrangement. Besides the classical inv(3)/t(3;3), a number of other 3q26/MECOM rearrangements with poor treatment response have been reported in AML. Here, we demonstrate, in a group of 33 AML patients with atypical 3q26 rearrangements, MECOM involvement with EVI1 overexpression but no or low MDS1-EVI1 levels. Moreover, the 3q26 translocations in these AML patients often involve superenhancers of genes active in myeloid development (eg, CD164, PROM1, CDK6, or MYC). In >50% of these cases, allele-specific GATA2 expression was observed, either by copy-number loss or by an unexplained allelic imbalance. Altogether, atypical 3q26 recapitulate the main leukemic mechanism of inv(3)/t(3;3) AML, namely EVI1 overexpression driven by enhancer hijacking, absent MDS1-EVI1 expression and potential GATA2 involvement. Therefore, we conclude that both atypical 3q26/MECOM and inv(3)/t(3;3) can be classified as a single entity of 3q26-rearranged AMLs. Routine analyses determining MECOM rearrangements and EVI1 and MDS1-EVI1 expression are required to recognize 3q-rearranged AML cases.


Assuntos
Inversão Cromossômica , Cromossomos Humanos Par 3/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Proteína do Locus do Complexo MDS1 e EVI1 , Translocação Genética , Elementos Facilitadores Genéticos , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1/biossíntese , Proteína do Locus do Complexo MDS1 e EVI1/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA