Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Commun ; 15(1): 1700, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402224

RESUMO

The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Indóis , Morfolinas , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Animais , Camundongos , Antígeno B7-H1 , Microambiente Tumoral , Linhagem Celular Tumoral , Imunoterapia , Modelos Animais de Doenças , Proteínas Mutadas de Ataxia Telangiectasia
2.
Mol Cancer Ther ; 20(9): 1723-1734, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224361

RESUMO

A recombinant Newcastle Disease Virus (NDV), encoding either a human (NDVhuGM-CSF, MEDI5395) or murine (NDVmuGM-CSF) GM-CSF transgene, combined broad oncolytic activity with the ability to significantly modulate genes related to immune functionality in human tumor cells. Replication in murine tumor lines was significantly diminished relative to human tumor cells. Nonetheless, intratumoral injection of NDVmuGM-CSF conferred antitumor effects in three syngeneic models in vivo; with efficacy further augmented by concomitant treatment with anti-PD-1/PD-L1 or T-cell agonists. Ex vivo immune profiling, including T-cell receptor sequencing, revealed profound immune-contexture changes consistent with priming and potentiation of adaptive immunity and tumor microenvironment (TME) reprogramming toward an immune-permissive state. CRISPR modifications rendered CT26 tumors significantly more permissive to NDV replication, and in this setting, NDVmuGM-CSF confers immune-mediated effects in the noninjected tumor in vivo Taken together, the data support the thesis that MEDI5395 primes and augments cell-mediated antitumor immunity and has significant utility as a combination partner with other immunomodulatory cancer treatments.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Imunomodulação , Imunoterapia/métodos , Vírus da Doença de Newcastle/genética , Terapia Viral Oncolítica/instrumentação , Microambiente Tumoral , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34228641

RESUMO

Myeloid-derived suppressor cells (MDSCs) are major negative regulators of immune responses in cancer and chronic infections. It remains unclear if regulation of MDSC activity in different conditions is controlled by similar mechanisms. We compared MDSCs in mice with cancer and lymphocytic choriomeningitis virus (LCMV) infection. Chronic LCMV infection caused the development of monocytic MDSCs (M-MDSCs) but did not induce polymorphonuclear MDSCs (PMN-MDSCs). In contrast, both MDSC populations were present in cancer models. An acquisition of immune-suppressive activity by PMN-MDSCs in cancer was controlled by IRE1α and ATF6 pathways of the endoplasmic reticulum (ER) stress response. Abrogation of PMN-MDSC activity by blockade of the ER stress response resulted in an increase in tumor-specific immune response and reduced tumor progression. In contrast, the ER stress response was dispensable for suppressive activity of M-MDSCs in cancer and LCMV infection. Acquisition of immune-suppressive activity by M-MDSCs in spleens was mediated by IFN-γ signaling. However, it was dispensable for suppressive activity of M-MDSCs in tumor tissues. Suppressive activity of M-MDSCs in tumors was retained due to the effect of IL-6 present at high concentrations in the tumor site. These results demonstrate disease- and population-specific mechanisms of MDSC accumulation and the need for targeting different pathways to achieve inactivation of these cells.


Assuntos
Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Viroses/imunologia , Animais , Linhagem Celular Tumoral , Doença Crônica , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/imunologia , Feminino , Humanos , Tolerância Imunológica/genética , Interferon gama/imunologia , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/classificação , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/classificação , Células Supressoras Mieloides/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Transcriptoma , Viroses/genética , Viroses/metabolismo
4.
Cancer Discov ; 11(11): 2828-2845, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34230008

RESUMO

Mutations in the STK11 (LKB1) gene regulate resistance to PD-1/PD-L1 blockade. This study evaluated this association in patients with nonsquamous non-small cell lung cancer (NSCLC) enrolled in three phase I/II trials. STK11 mutations were associated with resistance to the anti-PD-L1 antibody durvalumab (alone/with the anti-CTLA4 antibody tremelimumab) independently of KRAS mutational status, highlighting STK11 as a potential driver of resistance to checkpoint blockade. Retrospective assessments of tumor tissue, whole blood, and serum revealed a unique immune phenotype in patients with STK11 mutations, with increased expression of markers associated with neutrophils (i.e., CXCL2, IL6), Th17 contexture (i.e., IL17A), and immune checkpoints. Associated changes were observed in the periphery. Reduction of STAT3 in the tumor microenvironment using an antisense oligonucleotide reversed immunotherapy resistance in preclinical STK11 knockout models. These results suggest that STK11 mutations may hinder response to checkpoint blockade through mechanisms including suppressive myeloid cell biology, which could be reversed by STAT3-targeted therapy. SIGNIFICANCE: Patients with nonsquamous STK11-mutant (STK11mut) NSCLC are less likely than STK11 wild-type (STK11wt) patients to respond to anti-PD-L1 ± anti-CTLA4 immunotherapies, and their tumors show increased expression of genes and cytokines that activate STAT3 signaling. Preclinically, STAT3 modulation reverses this resistance, suggesting STAT3-targeted agents as potential combination partners for immunotherapies in STK11mut NSCLC.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinases Proteína-Quinases Ativadas por AMP , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Proteínas Serina-Treonina Quinases/genética , Estudos Retrospectivos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral
5.
J Immunother Cancer ; 9(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34145033

RESUMO

BACKGROUND: Immuno-oncology therapies are now part of the standard of care for cancer in many indications. However, durable objective responses remain limited to a subset of patients. As such, there is a critical need to identify biomarkers that can predict or enrich for treatment response. So far, the majority of putative biomarkers consist of features of the tumor microenvironment (TME). However, in preclinical mouse models, the collection of tumor tissue for this type of analysis is a terminal procedure, obviating the ability to directly link potential biomarkers to long-term treatment outcomes. METHODS: To address this, we developed and validated a novel non-terminal tumor sampling method to enable biopsy of the TME in mouse models based on fine needle aspiration. RESULTS: We show that this technique enables repeated in-life sampling of subcutaneous flank tumors and yields sufficient material to support downstream analyses of tumor-infiltrating immune cells using methods such as flow cytometry and single-cell transcriptomics. Moreover, using this technique we demonstrate that we can link TME biomarkers to treatment response outcomes, which is not possible using the current method of terminal tumor sampling. CONCLUSION: Thus, this minimally invasive technique is an important refinement for the pharmacodynamic analysis of the TME facilitating paired evaluation of treatment response biomarkers with outcomes and reducing the number of animals used in preclinical research.


Assuntos
Biomarcadores Tumorais/metabolismo , Biópsia por Agulha Fina/métodos , Imunoterapia/métodos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos
6.
Cancer Discov ; 11(5): 1100-1117, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33419761

RESUMO

The clinical benefit of PD-1 blockade can be improved by combination with CTLA4 inhibition but is commensurate with significant immune-related adverse events suboptimally limiting the doses of anti-CTLA4 mAb that can be used. MEDI5752 is a monovalent bispecific antibody designed to suppress the PD-1 pathway and provide modulated CTLA4 inhibition favoring enhanced blockade on PD-1+ activated T cells. We show that MEDI5752 preferentially saturates CTLA4 on PD-1+ T cells versus PD-1- T cells, reducing the dose required to elicit IL2 secretion. Unlike conventional PD-1/CTLA4 mAbs, MEDI5752 leads to the rapid internalization and degradation of PD-1. Moreover, we show that MEDI5752 preferentially localizes and accumulates in tumors providing enhanced activity when compared with a combination of mAbs targeting PD-1 and CTLA4 in vivo. Following treatment with MEDI5752, robust partial responses were observed in two patients with advanced solid tumors. MEDI5752 represents a novel immunotherapy engineered to preferentially inhibit CTLA4 on PD-1+ T cells. SIGNIFICANCE: The unique characteristics of MEDI5752 represent a novel immunotherapy engineered to direct CTLA4 inhibition to PD-1+ T cells with the potential for differentiated activity when compared with current conventional mAb combination strategies targeting PD-1 and CTLA4. This molecule therefore represents a step forward in the rational design of cancer immunotherapy.See related commentary by Burton and Tawbi, p. 1008.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma de Células Claras/tratamento farmacológico , Antígeno CTLA-4/metabolismo , Humanos , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Linfócitos T/imunologia
7.
Clin Cancer Res ; 26(23): 6284-6298, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817076

RESUMO

PURPOSE: While immune checkpoint inhibitors such as anti-PD-L1 are rapidly becoming the standard of care in the treatment of many cancers, only a subset of treated patients have long-term responses. IL12 promotes antitumor immunity in mouse models; however, systemic recombinant IL12 had significant toxicity and limited efficacy in early clinical trials. EXPERIMENTAL DESIGN: We therefore designed a novel intratumoral IL12 mRNA therapy to promote local IL12 tumor production while mitigating systemic effects. RESULTS: A single intratumoral dose of mouse (m)IL12 mRNA induced IFNγ and CD8+ T-cell-dependent tumor regression in multiple syngeneic mouse models, and animals with a complete response demonstrated immunity to rechallenge. Antitumor activity of mIL12 mRNA did not require NK and NKT cells. mIL12 mRNA antitumor activity correlated with TH1 tumor microenvironment (TME) transformation. In a PD-L1 blockade monotherapy-resistant model, antitumor immunity induced by mIL12 mRNA was enhanced by anti-PD-L1. mIL12 mRNA also drove regression of uninjected distal lesions, and anti-PD-L1 potentiated this response. Importantly, intratumoral delivery of mRNA encoding membrane-tethered mIL12 also drove rejection of uninjected lesions with very limited circulating IL12p70, supporting the hypothesis that local IL12 could induce a systemic antitumor immune response against distal lesions. Furthermore, in ex vivo patient tumor slice cultures, human IL12 mRNA (MEDI1191) induced dose-dependent IL12 production, downstream IFNγ expression and TH1 gene expression. CONCLUSIONS: These data demonstrate the potential for intratumorally delivered IL12 mRNA to promote TH1 TME transformation and robust antitumor immunity.See related commentary by Cirella et al., p. 6080.


Assuntos
Neoplasias Colorretais/prevenção & controle , Interleucina-12/administração & dosagem , Linfócitos do Interstício Tumoral/imunologia , Melanoma/prevenção & controle , RNA Mensageiro/administração & dosagem , Células Th1/imunologia , Microambiente Tumoral/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Apoptose , Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD8-Positivos , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Interleucina-12/genética , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , RNA Mensageiro/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cancer Ther ; 17(5): 1024-1038, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29545330

RESUMO

Ligation of OX40 (CD134, TNFRSF4) on activated T cells by its natural ligand (OX40L, CD252, TNFSF4) enhances cellular survival, proliferation, and effector functions such as cytokine release and cellular cytotoxicity. We engineered a recombinant human OX40L IgG4P Fc fusion protein termed MEDI6383 that assembles into a hexameric structure and exerts potent agonist activity following engagement of OX40. MEDI6383 displayed solution-phase agonist activity that was enhanced when the fusion protein was clustered by Fc gamma receptors (FcγRs) on the surface of adjacent cells. The resulting costimulation of OX40 on T cells induced NFκB promoter activity in OX40-expressing T cells and induced Th1-type cytokine production, proliferation, and resistance to regulatory T cell (Treg)-mediated suppression. MEDI6383 enhanced the cytolytic activity of tumor-reactive T cells and reduced tumor growth in the context of an alloreactive human T cell:tumor cell admix model in immunocompromised mice. Consistent with the role of OX40 costimulation in the expansion of memory T cells, MEDI6383 administered to healthy nonhuman primates elicited peripheral blood CD4 and CD8 central and effector memory T-cell proliferation as well as B-cell proliferation. Together, these results suggest that OX40 agonism has the potential to enhance antitumor immunity in human malignancies. Mol Cancer Ther; 17(5); 1024-38. ©2018 AACR.


Assuntos
Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Ligante OX40/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Linhagem Celular Tumoral , Citocinas/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Citotoxicidade Imunológica/imunologia , Feminino , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Macaca mulatta , Ligante OX40/genética , Ligante OX40/metabolismo , Multimerização Proteica/imunologia , Receptores OX40/agonistas , Receptores OX40/imunologia , Receptores OX40/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
9.
Mol Ther ; 25(8): 1917-1932, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578991

RESUMO

Vesicular stomatitis virus encoding the IFNß transgene (VSV-IFNß) is a mediator of potent oncolytic activity and is undergoing clinical evaluation for the treatment of solid tumors. Emerging preclinical and clinical data suggest treatment of tumors with oncolytic viruses may sensitize tumors to checkpoint inhibitors and increase the anti-tumor immune response. New generations of immuno-oncology molecules including T cell agonists are entering clinical development and could be hypothesized to enhance the activity of oncolytic viruses, including VSV-IFNß. Here, we show that VSV-IFNß exhibits multiple mechanisms of action, including direct cell killing, stimulation of an innate immune response, recruitment of CD8 T cells, and depletion of T regulatory cells. Moreover, VSV-IFNß promotes the establishment of a CD8 T cell response to endogenous tumor antigens. Our data demonstrate a significant enhancement of anti-tumor function for VSV-IFNß when combined with checkpoint inhibitors, but not OX40 agonists. While the addition of checkpoint inhibitors to VSV-IFNß generated robust tumor growth inhibition, it resulted in no increase in viral replication, transgene expression, or immunophenotypic changes beyond treatment with VSV-IFNß alone. We hypothesize that tumor-specific T cells generated by VSV-IFNß retain activity due to a lack of immune exhaustion when checkpoint inhibitors were used.


Assuntos
Terapia Genética , Vetores Genéticos/genética , Imunoterapia , Neoplasias/genética , Neoplasias/imunologia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Vírus da Estomatite Vesicular Indiana/genética , Animais , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Terapia Combinada , Modelos Animais de Doenças , Expressão Gênica , Terapia Genética/métodos , Humanos , Imunomodulação , Imunoterapia/métodos , Interferon beta/genética , Interferon beta/metabolismo , Interferons/genética , Interferons/metabolismo , Melanoma Experimental , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Receptores OX40/agonistas , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transdução Genética , Transgenes , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Res ; 77(10): 2686-2698, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28283653

RESUMO

Immunogenic cell death (ICD) is the process by which certain cytotoxic drugs induce apoptosis of tumor cells in a manner that stimulates the immune system. In this study, we investigated whether antibody-drug conjugates (ADCS) conjugated with pyrrolobenzodiazepine dimer (PBD) or tubulysin payloads induce ICD, modulate the immune microenvironment, and could combine with immuno-oncology drugs to enhance antitumor activity. We show that these payloads on their own induced an immune response that prevented the growth of tumors following subsequent tumor cell challenge. ADCs had greater antitumor activity in immunocompetent versus immunodeficient mice, demonstrating a contribution of the immune system to the antitumor activity of these ADCs. ADCs also induced immunologic memory. In the CT26 model, depletion of CD8+ T cells abrogated the activity of ADCs when used alone or in combination with a PD-L1 antibody, confirming a role for T cells in antitumor activity. Combinations of ADCs with immuno-oncology drugs, including PD-1 or PD-L1 antibodies, OX40 ligand, or GITR ligand fusion proteins, produced synergistic antitumor responses. Importantly, synergy was observed in some cases with suboptimal doses of ADCs, potentially providing an approach to achieve potent antitumor responses while minimizing ADC-induced toxicity. Immunophenotyping studies in different tumor models revealed broad immunomodulation of lymphoid and myeloid cells by ADC and ADC/immuno-oncology combinations. These results suggest that it may be possible to develop novel combinatorial therapies with PBD- and tubulysin-based ADC and immuno-oncology drugs that may increase clinical responses. Cancer Res; 77(10); 2686-98. ©2017 AACR.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , Imunoconjugados/farmacologia , Fatores Imunológicos/farmacologia , Pirróis/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Biomarcadores , Vacinas Anticâncer , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Memória Imunológica , Imunofenotipagem , Imunoterapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ratos , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Rep ; 7: 40098, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067257

RESUMO

Bispecific antibodies are considered attractive bio-therapeutic agents owing to their ability to target two distinct disease mediators. Cross-arm avidity targeting of antigen double-positive cancer cells over single-positive normal tissue is believed to enhance the therapeutic efficacy, restrict major escape mechanisms and increase tumor-targeting selectivity, leading to reduced systemic toxicity and improved therapeutic index. However, the interplay of factors regulating target selectivity is not well understood and often overlooked when developing clinically relevant bispecific therapeutics. We show in vivo that dual targeting alone is not sufficient to endow selective tumor-targeting, and report the pivotal roles played by the affinity of the individual arms, overall avidity and format valence. Specifically, a series of monovalent and bivalent bispecific IgGs composed of the anti-HER2 trastuzumab moiety paired with affinity-modulated VH and VL regions of the anti-EGFR GA201 mAb were tested for selective targeting and eradication of double-positive human NCI-H358 non-small cell lung cancer target tumors over single-positive, non-target NCI-H358-HER2 CRISPR knock out tumors in nude mice bearing dual-flank tumor xenografts. Affinity-reduced monovalent bispecific variants, but not their bivalent bispecific counterparts, mediated a greater degree of tumor targeting selectivity, while the overall efficacy against the targeted tumor was not substantially affected.


Assuntos
Anticorpos Biespecíficos/imunologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Trastuzumab/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Receptores ErbB/imunologia , Humanos , Camundongos Nus , Receptor ErbB-2/imunologia , Trastuzumab/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Cancer Res ; 23(13): 3416-3427, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069723

RESUMO

Purpose: To generate and characterize a murine GITR ligand fusion protein (mGITRL-FP) designed to maximize valency and the potential to agonize the GITR receptor for cancer immunotherapy.Experimental Design: The EC50 value of the mGITRL-FP was compared with an anti-GITR antibody in an in vitro agonistic cell-based reporter assay. We assessed the impact of dose, schedule, and Fc isotype on antitumor activity and T-cell modulation in the CT26 tumor model. The activity of the mGITRL-FP was compared with an agonistic murine OX40L-FP targeting OX40, in CT26 and B16F10-Luc2 tumor models. Combination of the mGITRL-FP with antibodies targeting PD-L1, PD-1, or CTLA-4 was analyzed in mice bearing CT26 tumors.Results: The mGITRL-FP had an almost 50-fold higher EC50 value compared with an anti-murine GITR antibody. Treatment of CT26 tumor-bearing mice with mGITRL-FP-mediated significant antitumor activity that was dependent on isotype, dose, and duration of exposure. The antitumor activity could be correlated with the increased proliferation of peripheral CD8+ and CD4+ T cells and a significant decrease in the frequency of intratumoral Tregs. The combination of mGITRL-FP with mOX40L-FP or checkpoint inhibitor antagonists enhanced antitumor immunity above that of monotherapy treatment.Conclusions: These results suggest that therapeutically targeting GITR represents a unique approach to cancer immunotherapy and suggests that a multimeric fusion protein may provide increased agonistic potential versus an antibody. In addition, these data provide, for the first time, early proof of concept for the potential combination of GITR targeting agents with OX40 agonists and PD-L1 antagonists. Clin Cancer Res; 23(13); 3416-27. ©2017 AACR.


Assuntos
Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Melanoma Experimental/imunologia , Proteínas de Fusão Oncogênica/administração & dosagem , Fatores de Necrose Tumoral/imunologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Modelos Animais de Doenças , Proteína Relacionada a TNFR Induzida por Glucocorticoide/administração & dosagem , Humanos , Melanoma Experimental/genética , Melanoma Experimental/terapia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/imunologia , Camundongos , Ligante OX40 , Proteínas de Fusão Oncogênica/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Fatores de Necrose Tumoral/agonistas , Fatores de Necrose Tumoral/genética
13.
Oncoimmunology ; 5(8): e1208875, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27622077

RESUMO

MEDI9447 is a human monoclonal antibody that is specific for the ectoenzyme CD73 and currently undergoing Phase I clinical trials. Here we show that MEDI9447 is a potent inhibitor of CD73 ectonucleotidase activity, with wide ranging immune regulatory consequences. MEDI9447 results in relief from adenosine monophosphate (AMP)-mediated lymphocyte suppression in vitro and inhibition of mouse syngeneic tumor growth in vivo. In contrast with other cancer immunotherapy agents such as checkpoint inhibitors or T-cell agonists, MEDI9447 drives changes in both myeloid and lymphoid infiltrating leukocyte populations within the tumor microenvironment of mouse models. Changes include significant alterations in a number of tumor micro-environmental subpopulations including increases in CD8(+) effector cells and activated macrophages. Furthermore, these changes correlate directly with responder and non-responder subpopulations within animal studies using syngeneic tumors. Combination data showing additive activity between MEDI9447 and anti-PD-1 antibodies using human cells in vitro and mouse tumor models further demonstrate the potential value of relieving adenosine-mediated immunosuppression. Based on these data, a Phase I study to test the safety, tolerability, and clinical activity of MEDI9447 in cancer patients was initiated (NCT02503774).

14.
Cancer Immunol Res ; 3(9): 1052-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25943534

RESUMO

Programmed cell-death 1 ligand 1 (PD-L1) is a member of the B7/CD28 family of proteins that control T-cell activation. Many tumors can upregulate expression of PD-L1, inhibiting antitumor T-cell responses and avoiding immune surveillance and elimination. We have identified and characterized MEDI4736, a human IgG1 monoclonal antibody that binds with high affinity and specificity to PD-L1 and is uniquely engineered to prevent antibody-dependent cell-mediated cytotoxicity. In vitro assays demonstrate that MEDI4736 is a potent antagonist of PD-L1 function, blocking interaction with PD-1 and CD80 to overcome inhibition of primary human T-cell activation. In vivo MEDI4736 significantly inhibits the growth of human tumors in a novel xenograft model containing coimplanted human T cells. This activity is entirely dependent on the presence of transplanted T cells, supporting the immunological mechanism of action for MEDI4736. To further determine the utility of PD-L1 blockade, an anti-mouse PD-L1 antibody was investigated in immunocompetent mice. Here, anti-mouse PD-L1 significantly improved survival of mice implanted with CT26 colorectal cancer cells. The antitumor activity of anti-PD-L1 was enhanced by combination with oxaliplatin, which resulted in increased release of HMGB1 within CT26 tumors. Taken together, our results demonstrate that inhibition of PD-L1 function can have potent antitumor activity when used as monotherapy or in combination in preclinical models, and suggest it may be a promising therapeutic approach for the treatment of cancer. MEDI4736 is currently in several clinical trials both alone and in combination with other agents, including anti-CTLA-4, anti-PD-1, and inhibitors of IDO, MEK, BRAF, and EGFR.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Animais , Anticorpos Monoclonais/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Ligação Competitiva , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Teste de Cultura Mista de Linfócitos , Melanoma/imunologia , Melanoma/patologia , Melanoma/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
MAbs ; 6(6): 1571-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484061

RESUMO

Individual or combinations of somatic mutations found in genes from colorectal cancers can redirect the effects of chemotherapy and targeted agents on cancer cell survival and, consequently, on clinical outcome. Novel therapeutics with mechanisms of action that are independent of mutational status would therefore fulfill a current unmet clinical need. Here the CEA and CD3 bispecific single-chain antibody MEDI-565 (also known as MT111 and AMG 211) was evaluated for its ability to activate T cells both in vitro and in vivo and to kill human tumor cell lines harboring various somatic mutations commonly found in colorectal cancers. MEDI-565 specifically bound to normal and malignant tissues in a CEA-specific manner, and only killed CEA positive cells. The BiTE® antibody construct mediated T cell-directed killing of CEA positive tumor cells within 6 hours, at low effector-to-target ratios which were independent of high concentrations of soluble CEA. The potency of in vitro lysis was dependent on CEA antigen density but independent of the mutational status in cancer cell lines. Importantly, individual or combinations of mutated KRAS and BRAF oncogenes, activating PI3KCA mutations, loss of PTEN expression, and loss-of-function mutations in TP53 did not reduce the activity in vitro. MEDI-565 also prevented growth of human xenograft tumors which harbored various mutations. These findings suggest that MEDI-565 represents a potential treatment option for patients with CEA positive tumors of diverse origin, including those with individual or combinations of somatic mutations that may be less responsive to chemotherapy and other targeted agents.


Assuntos
Anticorpos Biespecíficos/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Animais , Anticorpos Biespecíficos/imunologia , Complexo CD3/imunologia , Células CHO , Antígeno Carcinoembrionário/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Cricetinae , Cricetulus , Citotoxicidade Imunológica/imunologia , Feminino , Células HT29 , Células HeLa , Humanos , Ativação Linfocitária/imunologia , Masculino , Camundongos SCID , Mutação , Neoplasias/genética , Neoplasias/imunologia , Ligação Proteica/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Neoplasia ; 11(6): 509-17, 2 p following 517, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19484140

RESUMO

EphA2 is a receptor tyrosine kinase that has been shown to be overexpressed in a variety of human tumor types. Previous studies demonstrated that agonist monoclonal antibodies targeting EphA2 induced the internalization and degradation of the receptor, thereby abolishing its oncogenic effects. In this study, the in vitro and in vivo antibody-dependent cell-mediated cytotoxicity (ADCC) activity of EphA2 effector-enhanced agonist monoclonal antibodies was evaluated. With tumor cell lines and healthy human peripheral blood monocytes, the EphA2 antibodies demonstrated approximately 80% tumor cell killing. In a dose-dependent manner, natural killer (NK) cells were required for the in vitro ADCC activity and became activated as demonstrated by the induction of cell surface expression of CD107a. To assess the role of NK cells on antitumor efficacy in vivo, the EphA2 antibodies were evaluated in xenograft models in severe compromised immunodeficient (SCID) mice (which have functional NK cells and monocytes) and SCID nonobese diabetic (NOD) mice (which largely lack functional NK cells and monocytes). Dosing of EphA2 antibody in the SCID murine tumor model resulted in a 6.2-fold reduction in tumor volume, whereas the SCID/nonobese diabetic model showed a 1.6-fold reduction over the isotype controls. Together, these results demonstrate that the anti-EphA2 monoclonal antibodies may function through at least two mechanisms of action: EphA2 receptor activation and ADCC-mediated activity. These novel EphA2 monoclonal antibodies provide additional means by which host effector mechanisms can be activated for selective destruction of EphA2-expressing tumor cells.


Assuntos
Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Neoplasias/imunologia , Receptor EphA2/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Genótipo , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Polimorfismo Genético , Receptor EphA2/agonistas , Receptor EphA2/metabolismo , Receptores de IgG/genética , Ressonância de Plasmônio de Superfície , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Immunother ; 32(4): 341-52, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19342971

RESUMO

Carcinoembryonic antigen (CEA, CD66e) is a well-characterized tumor-associated antigen that is frequently overexpressed in tumors. Phospholipases release CEA from tumor cells resulting in high circulating serum levels of soluble CEA (sCEA) that has been validated as marker for progression of colorectal, breast, and lung cancers. sCEA also acts as a competitive inhibitor for anticancer strategies targeting membrane-bound CEA. As a novel therapeutic approach for treatment of tumors expressing CEA on their cell surface, we constructed a series of bispecific single-chain antibodies (bscAb) combining various single-chain variable fragments recognizing human CEA with a deimmunized single-chain variable fragments recognizing human CD3. CEA/CD3-bscAbs redirected human T cells to lyse CEA-expressing tumor cells in vitro and in vivo. Efficient tumor cell lysis was achieved in vitro at bscAb concentrations from 1 pg/mL (19 fM) to 8.9 pg/mL with preactivated CD8 T cells, and 200 to 500 pg/mL with unstimulated peripheral blood mononuclear cell. The cytotoxic activity of a subset of CEA/CD3-bscAbs was not competitively inhibited by sCEA at concentrations that exceeded levels found in the serum of most cancer patients. Treatment with CEA/CD3-bscAbs prevented the growth of human colorectal cancer lines in a severe combined immunodeficiency mouse model modified to show human T cell killing of tumors. A murine surrogate CEA/CD3-bscAb capable of recruiting murine T cells for redirected tumor lysis in immunocompetent mice prevented the growth of lung tumors expressing human CEA. Together, our results reveal a unique opportunity for targeting cytotoxic T cells toward CEA-expressing tumors without being competitively inhibited by sCEA and establish CEA/CD3-bscAb as a promising and potent therapeutic approach.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno Carcinoembrionário/imunologia , Neoplasias Colorretais/terapia , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Anticorpos Biespecíficos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células CHO , Antígeno Carcinoembrionário/sangue , Cricetinae , Cricetulus , Humanos , Imunoterapia , Camundongos , Camundongos SCID , Proteínas Recombinantes de Fusão/imunologia , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/imunologia
18.
Mol Cancer Ther ; 5(12): 3122-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17172415

RESUMO

The humanized monoclonal antibody Abegrin, currently in phase II trials for treatment of solid tumors, specifically recognizes the integrin alphavbeta3. Due to its high expression on mature osteoclasts, angiogenic endothelial cells, and tumor cells, integrin alphavbeta3 functions in several pathologic processes important to tumor growth and metastasis. Targeting of this integrin with Abegrin results in antitumor, antiangiogenic, and antiosteolytic activities. Here, we exploit the species specificity of Abegrin to evaluate the effects of direct targeting of tumor cells (independent of targeting of endothelia or osteoclasts). Flow cytometry analysis of human tumor cell lines shows high levels of alphavbeta3 on many solid tumors, including cancers of the prostate, skin, ovary, kidney, lung, and breast. We also show that tumor growth of alphavbeta3-expressing tumor cells is inhibited by Abegrin in a dose-dependent manner. We present a novel finding that high-dose administration can actively impair the antitumor activity of Abegrin. We also provide evidence that antibody-dependent cellular cytotoxicity contributes to in vitro and in vivo antitumor activity. Finally, it was observed that peak biological activity of Abegrin arises at serum levels that are consistent with those achieved in clinical trials. These results support a concept that Abegrin can be used to achieve selective targeting of the many tumor cells that express alphavbeta3 integrin. In combination with the well-established concept that alphavbeta3 plays a key role in cancer-associated angiogenesis and osteolytic activities, this triad of activity could provide new opportunities for therapeutic targeting of cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Integrina alfaVbeta3/imunologia , Neoplasias/terapia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Relação Dose-Resposta Imunológica , Feminino , Humanos , Integrina alfaVbeta3/biossíntese , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias/imunologia , Especificidade da Espécie , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Hum Gene Ther ; 14(8): 777-87, 2003 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12804140

RESUMO

Adenoviral vectors used in gene therapy are predominantly derived from adenovirus serotype 5 (Ad5), which infects a broad range of cells. Ad5 cell entry involves interactions with the coxsackie-adenovirus receptor (CAR) and integrins. To assess these receptors in vivo, we mutated amino acid residues in fiber and penton that are involved in receptor interaction and showed that CAR and integrins play a minor role in hepatic transduction but that integrins can influence gene delivery to other tissues. These data suggest that an alternative entry pathway exists for hepatocyte transduction in vivo that is more important than CAR or integrins. In vitro data suggest a role for heparan sulfate glycosaminoglycans (HSG) in adenovirus transduction. The role of the fiber shaft in liver uptake was examined by introducing specific amino acid changes into a putative HSG-binding motif contained within the shaft or by preparing fiber shaft chimeras between Ad5 and Ad35 fibers. Results were obtained that demonstrate that the Ad5 fiber shaft can influence gene transfer both in vitro and to the liver in vivo. These observations indicate that the currently accepted two-step entry pathway, which involves CAR and integrins, described for adenoviral infection in vitro, is not used for hepatic gene transfer in vivo. In contrast, alpha(v) integrins influence gene delivery to the lung, spleen, heart, and kidney. The detargeted vector constructs described here may provide a foundation for the development of targeted adenoviral vectors.


Assuntos
Adenoviridae/genética , Proteínas do Capsídeo/genética , Vetores Genéticos/farmacocinética , Transdução Genética , Motivos de Aminoácidos , Animais , Western Blotting , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Células Cultivadas , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Vetores Genéticos/administração & dosagem , Vetores Genéticos/sangue , Glicosaminoglicanos/fisiologia , Hepatócitos/metabolismo , Humanos , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Receptores Virais/metabolismo , Vírion/metabolismo , beta-Galactosidase/genética
20.
J Virol ; 76(4): 1892-903, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11799184

RESUMO

Adenovirus binds to mammalian cells via interaction of fiber with the coxsackie-adenovirus receptor (CAR). Redirecting adenoviral vectors to enter target cells via new receptors has the advantage of increasing the efficiency of gene delivery and reducing nonspecific transduction of untargeted tissues. In an attempt to reach this goal, we have produced bifunctional molecules with soluble CAR (sCAR), which is the extracellular domain of CAR fused to peptide-targeting ligands. Two peptide-targeting ligands have been evaluated: a cyclic RGD peptide (cRGD) and the receptor-binding domain of apolipoprotein E (ApoE). Human diploid fibroblasts (HDF) are poorly transduced by adenovirus due to a lack of CAR on the surface. Addition of the sCAR-cRGD or sCAR-ApoE targeting protein to adenovirus redirected binding to the appropriate receptor on HDF. However, a large excess of the monomeric protein was needed for maximal transduction, indicating a suboptimal interaction. To improve interaction of sCAR with the fiber knob, an isoleucine GCN4 trimerization domain was introduced, and trimerization was verified by cross-linking analysis. Trimerized sCAR proteins were significantly better at interacting with fiber and inhibiting binding to HeLa cells. Trimeric sCAR proteins containing cRGD and ApoE were more efficient at transducing HDF in vitro than the monomeric proteins. In addition, the trimerized sCAR protein without targeting ligands efficiently blocked liver gene transfer in normal C57BL/6 mice. However, addition of either ligand failed to retarget the liver in vivo. One explanation may be the large complex size, which serves to decrease the bioavailability of the trimeric sCAR-adenovirus complexes. In summary, we have demonstrated that trimerization of sCAR proteins can significantly improve the potency of this targeting approach in altering vector tropism in vitro and allow the efficient blocking of liver gene transfer in vivo.


Assuntos
Adenoviridae/genética , Apolipoproteínas E/metabolismo , Marcação de Genes , Vetores Genéticos , Oligopeptídeos/metabolismo , Receptores Virais/química , Adenoviridae/metabolismo , Animais , Apolipoproteínas E/genética , Linhagem Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Células HeLa , Humanos , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/genética , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Recombinantes de Fusão/genética , Solubilidade , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA