Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Pharmacol ; 942: 175512, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36657655

RESUMO

BACKGROUND: and purpose: Phenazopyridine (PAP) is an over-the-counter drug widely used to provide symptomatic relief of bladder pain in conditions such as cystitis or bladder pain syndrome (BPS). Whereas the analgesic effect of PAP has been attributed to a local effect on the mucosa of the lower urinary tract (LUT), the molecular targets of PAP remain unknown. We investigated the effect of PAP on pain-related Transient Receptor Potential (TRP) channels expressed in sensory neurons that innervate the bladder wall. EXPERIMENTAL APPROACH: The effects of PAP on the relevant TRP channels (TRPV1, TRPA1, TRPM8, TRPM3) expressed in HEK293 or CHO cells was investigated using Fura-2-based calcium measurements and whole-cell patch-clamp recordings. Activity of PAP on TRPM8 was further analysed using Fura-2-based calcium imaging on sensory neurons isolated from lumbosacral dorsal root ganglia (DRG) of mice. KEY RESULTS: PAP rapidly and reversibly inhibits responses of TRPM8 expressed in HEK293 cells to cold and menthol, with IC50 values between 2 and 10 µM. It acts by shifting the voltage dependence of channel activation towards positive potentials, opposite to the effect of menthol. PAP also inhibits TRPM8-mediated, menthol-evoked calcium responses in lumbosacral DRG neurons. At a concentration of 10 µM, PAP did not significantly affect TRPA1, TRPV1, or TRPM3. CONCLUSION AND IMPLICATIONS: PAP inhibits TRPM8 in a concentration range consistent with PAP levels in the urine of treated patients. Since TRPM8 is expressed in bladder afferent neurons and upregulated in patients with painful bladder disorders, TRPM8 inhibition may underlie the analgesic activity of PAP.


Assuntos
Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Animais , Cricetinae , Humanos , Camundongos , Cálcio/metabolismo , Cricetulus , Fura-2/farmacologia , Gânglios Espinais/metabolismo , Células HEK293 , Mentol/farmacologia , Dor , Fenazopiridina/farmacologia , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1 , Bexiga Urinária/metabolismo
2.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008533

RESUMO

The cation channel TRPM3 is activated by heat and the neurosteroid pregnenolone sulfate. TRPM3 is expressed on sensory neurons innervating the skin, where together with TRPV1 and TRPA1, it functions as one of three redundant sensors of acute heat. Moreover, functional upregulation of TRPM3 during inflammation contributes to heat hyperalgesia. The role of TRPM3 in sensory neurons innervating internal organs such as the bladder is currently unclear. Here, using retrograde labeling and single-molecule fluorescent RNA in situ hybridization, we demonstrate expression of mRNA encoding TRPM3 in a large subset of dorsal root ganglion (DRG) neurons innervating the mouse bladder, and confirm TRPM3 channel functionality in these neurons using Fura-2-based calcium imaging. After induction of cystitis by injection of cyclophosphamide, we observed a robust increase of the functional responses to agonists of TRPM3, TRPV1, and TRPA1 in bladder-innervating DRG neurons. Cystometry and voided spot analysis in control and cyclophosphamide-treated animals did not reveal differences between wild type and TRPM3-deficient mice, indicating that TRPM3 is not critical for normal voiding. We conclude that TRPM3 is functionally expressed in a large proportion of sensory bladder afferent, but its role in bladder sensation remains to be established.


Assuntos
Inflamação/metabolismo , Neurônios Aferentes/metabolismo , Canais de Cátion TRPM/metabolismo , Regulação para Cima/fisiologia , Bexiga Urinária/metabolismo , Animais , Ciclofosfamida/farmacologia , Cistite/induzido quimicamente , Cistite/metabolismo , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/efeitos dos fármacos , Pregnenolona/farmacologia , RNA Mensageiro/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação para Cima/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos
3.
Elife ; 92020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32880575

RESUMO

Genetic ablation or pharmacological inhibition of the heat-activated cation channel TRPM3 alleviates inflammatory heat hyperalgesia, but the underlying mechanisms are unknown. We induced unilateral inflammation of the hind paw in mice, and directly compared expression and function of TRPM3 and two other heat-activated TRP channels (TRPV1 and TRPA1) in sensory neurons innervating the ipsilateral and contralateral paw. We detected increased Trpm3 mRNA levels in dorsal root ganglion neurons innervating the inflamed paw, and augmented TRP channel-mediated calcium responses, both in the cell bodies and the intact peripheral endings of nociceptors. In particular, inflammation provoked a pronounced increase in nociceptors with functional co-expression of TRPM3, TRPV1 and TRPA1. Finally, pharmacological inhibition of TRPM3 dampened TRPV1- and TRPA1-mediated responses in nociceptors innervating the inflamed paw, but not in those innervating healthy tissue. These insights into the mechanisms underlying inflammatory heat hypersensitivity provide a rationale for developing TRPM3 antagonists to treat pathological pain.


Assuntos
Inflamação/metabolismo , Nociceptores/metabolismo , Canais de Cátion TRPM/metabolismo , Regulação para Cima/fisiologia , Animais , Feminino , Gânglios Espinais/metabolismo , Membro Posterior/metabolismo , Membro Posterior/fisiopatologia , Temperatura Alta , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
5.
Nature ; 559(7713): E7, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29720653

RESUMO

In this Letter, the trace is missing in Fig. 1e. This error has been corrected online.

6.
Nature ; 555(7698): 662-666, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29539642

RESUMO

Acute pain represents a crucial alarm signal to protect us from injury. Whereas the nociceptive neurons that convey pain signals were described more than a century ago, the molecular sensors that detect noxious thermal or mechanical insults have yet to be fully identified. Here we show that acute noxious heat sensing in mice depends on a triad of transient receptor potential (TRP) ion channels: TRPM3, TRPV1, and TRPA1. We found that robust somatosensory heat responsiveness at the cellular and behavioural levels is observed only if at least one of these TRP channels is functional. However, combined genetic or pharmacological elimination of all three channels largely and selectively prevents heat responses in both isolated sensory neurons and rapidly firing C and Aδ sensory nerve fibres that innervate the skin. Strikingly, Trpv1-/-Trpm3-/-Trpa1-/- triple knockout (TKO) mice lack the acute withdrawal response to noxious heat that is necessary to avoid burn injury, while showing normal nociceptive responses to cold or mechanical stimuli and a preserved preference for moderate temperatures. These findings indicate that the initiation of the acute heat-evoked pain response in sensory nerve endings relies on three functionally redundant TRP channels, representing a fault-tolerant mechanism to avoid burn injury.


Assuntos
Temperatura Alta/efeitos adversos , Dor Nociceptiva/fisiopatologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Sensação Térmica/fisiologia , Animais , Queimaduras/fisiopatologia , Queimaduras/prevenção & controle , Temperatura Baixa/efeitos adversos , Feminino , Masculino , Camundongos , Camundongos Knockout , Terminações Nervosas/fisiologia , Fibras Nervosas/fisiologia , Nociceptividade/fisiologia , Células Receptoras Sensoriais/fisiologia , Pele/inervação , Pele/fisiopatologia , Canal de Cátion TRPA1/deficiência , Canal de Cátion TRPA1/genética , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Sensação Térmica/genética
7.
Cell Calcium ; 66: 19-24, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28807146

RESUMO

Calcium signals control a plethora of essential cellular functions ranging from secretion and contraction to gene expression and sensory signaling cascades. An essential part of intracellular calcium signals originates from the transmembrane flux of calcium ions, which is mainly mediated through different calcium-permeable cation channels with variable calcium selectivity. Opening of individual calcium permeable channels induces a local cytosolic calcium rise that can be highly restricted in time and space. Here, we provide a short overview of the current knowledge about calcium permeation and localized calcium signals in transient receptor potential (TRP) channels. We also present a brief survey of some fundamental theoretical aspects of the local calcium signals generated upon opening of single calcium-permeable channels, and compare theoretical predictions with published experimental data on TRP channel-mediated local calcium signals.


Assuntos
Sinalização do Cálcio/fisiologia , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Humanos , Modelos Moleculares , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Canais de Cátion TRPC/química
8.
Elife ; 52016 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-27449282

RESUMO

Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology.


Assuntos
Isotiocianatos/metabolismo , Mentol/metabolismo , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/metabolismo , Animais , Sinalização do Cálcio , Cinética , Camundongos , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA