RESUMO
The title compound, [Ru(C12H14NO2)2(C12H8N2)]PF6 crystallizes in the tetra-gonal Sohnke space group P41212. The two bidentate chiral salicyloxazoline ligands and the phenanthroline co-ligand coordinate to the central RuIII atom through N,O and N,N atom pairs to form bite angles of 89.76â (15) and 79.0â (2)°, respectively. The octa-hedral coordination of the bidentate ligands leads to a propeller-like shape, which induces metal-centered chirality onto the complex, with a right-handed (Δ) absolute configuration [the Flack parameter value is -0.003â (14)]. Both the complex cation and the disordered PF6 - counter-anion are located on twofold rotation axes. Apart from Coulombic forces, the crystal cohesion is ensured by non-classical C-Hâ¯O and C-Hâ¯F inter-actions.
RESUMO
The title compound, [Ru(C12H14NO2)Cl(η6-C6H6)], exhibits a half-sandwich tripod stand structure and crystallizes in the ortho-rhom-bic space group P212121. The arene group is η6 π-coordinated to the Ru atom with a centroid-to-metal distance of 1.6590â (5)â Å, with the (S)-2-(4-isopropyl-4,5-di-hydro-oxazol-2-yl)phenolate chelate ligand forming a bite angle of 86.88â (19)° through its N and phenolate O atoms. The pseudo-octa-hedral geometry assumed by the complex is completed by a chloride ligand. The coordination of the optically pure bidentate ligand induces metal centered chirality onto the complex with a Flack parameter of -0.056.
RESUMO
Individual fingerprints of different isomers of C3H3+ cations have been identified by studying photoionization, photoexcitation, and photofragmentation of C3H3+ near the carbon K-edge. The experiment was performed employing the photon-ion merged-beams technique at the photon-ion spectrometer at PETRA III (PIPE). This technique is a variant of near-edge X-ray absorption fine-structure spectroscopy, which is particularly sensitive to the 1s â π* excitation. The C3H3+ primary ions were generated by an electron cyclotron resonance ion source. C3Hn2+ product ions with n = 0, 1, 2, and 3 were observed for photon energies in the range of 279.0 eV to 295.2 eV. The experimental spectra are interpreted with the aid of theoretical calculations within the framework of time-dependent density functional theory. To this end, absorption spectra have been calculated for three different constitutional isomers of C3H3+. We find that our experimental approach offers a new possibility to study at the same time details of the electronic structure and of the geometry of molecular ions such as C3H3+.
RESUMO
The title compound, C14H12O4, comprises of two crystallographically independent mol-ecules in the asymmetric unit, linked via C-Hâ¯O inter-actions to form dimeric entities. The allylic groups are twisted out of the phenyl planes with dihedral angles varying between 7.92â (13) and 25.42â (8)°. In the crystal, the packing follows a zigzag pattern along the c-axis direction. The absolute configuration of the sample could not be determined reliably.
RESUMO
A series of novel 1,2,3-triazole and chiral Schiff base hybrids 2-6 were synthesized by Schiff base condensation reaction from pre-prepared parent component of the hybrids (1,2,3-triazole 1) and series of primary chiral amines and their chemical structure were confirmed using NMR and FTIR spectroscopies, and CHN elemental analysis. Compounds 1-6 were evaluated for their anticancer activity against two cancer PC3 (prostate) and A375 (skin) and MRC-5 (healthy) cell lines by Almar Blue assay method. The compounds exhibited significant cytotoxicity against the tested cancer cell lines. Among the tested compounds 3 and 6 showed very good activity for the inhibition of the cancer cell lines and low toxicity for the healthy cell lines. All the compounds exhibited high binding affinity for Androgen receptor modulators (PDB ID: 5t8e) and Human MIA (PDB ID: 1i1j) inhibitors compared to the reference anticancer drug (cisplatin). Structure activity relationships (SARs) of the tested compounds is in good agreement with DFT and molecular docking studies. The compounds exhibited desirable physicochemical properties for drug likeness.
Assuntos
Antineoplásicos , Bases de Schiff , Humanos , Simulação de Acoplamento Molecular , Bases de Schiff/farmacologia , Bases de Schiff/química , Triazóis/farmacologia , Triazóis/química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura MolecularRESUMO
Bacterial resistance to antibiotics poses a significant global challenge for the public sector. Globally, researchers are actively investigating solutions to tackle the issue of bacterial resistance to antibiotics, with Schiff bases standing out as promising contenders in the fight against antimicrobial resistance. This study focused on synthesizing a series of Schiff bases (CA1-CA10) by reacting cinnamaldehyde with various aniline derivatives. Various analytical techniques, such as NMR, FTIR, UV-Vis, elemental analysis, and mass spectrometry, were employed to elucidate the structures of the synthesized compounds. Furthermore, crystal structure of CA8 was obtained using single crystal X-ray spectroscopy. The compounds were subjected to in vitro testing to assess their antibacterial and antifungal properties against eleven bacterial strains and four fungal strains. The results revealed diverse activity levels against the pathogens at varying concentrations, with notable potency observed in compounds CA3, CA4, CA9, and CA10, as indicated by their minimum inhibitory concentrations (MIC) values. The observed activity of the compounds seemed to be influenced by the specific substituents attached to their molecular structure. By conducting computational and molecular docking studies, the electronic properties of the compounds were investigated, further substantiating their potential as effective antimicrobial agents.
RESUMO
Invited for the cover of this issue are Koop Lammertsma and co-workers at the University of Johannesburg and Vrije Universiteit Amsterdam. The image of the kudu's antlers depicts the isomerization and racemization of the chiral-at-metal complex MoO2(acnac)2 (acnac=ß-ketoiminate). Read the full text of the article at 10.1002/chem.202302516.
RESUMO
Octahedral chiral-at-metal complexes MX2 (a-chel)2 (a-chel=asymmetric chelate) can rearrange their ligands by four mechanisms known as the Bailar (B), Ray-Dutt (RD), Conte-Hippler (CH), and Dhimba-Muller-Lammertsma (DML) twists. Racemization involves their interconnections, which were computed for MoO2 (acnac)2 (acnac=ß-ketoiminate) using density functional theory at ωB97x-D with the 6-31G(d,p) and 6-311G(2d,p) basis sets and LANL2DZ for molybdenum. Racemizing the cis(NN) isomer, being the global energy minimum with trans oriented imine groups, is a three step process (DML-CH-DML) that requires 17.4â kcal/mol, while all three cis isomers (cis(NN), cis(NO), and cis(OO)) interconvert at ≤17.9â kcal/mol. The B and RD twists are energetically not competitive and neither are the trans isomers. The interconnection of all enantiomeric minima and transition structures is summarized in a graph that also visualizes valley ridge inflection points for two of the three CH twists. Geometrical features of the minima and twists are given. Lastly, the influence of N-substitution on the favored racemization pathway is evaluated. The present comprehensive study serves as a template for designing chiral-at-metal MX2 (a-chel)2 catalysts that may retain their chiral integrity.
RESUMO
The title compound, having the mol-ecular formula [RuI(η6-C10H14)(C10H8N2)]PF6, crystallizes in the triclinic P (Z = 2) space group as a half-sandwich complex resembling a three-legged piano stool. Important geometrical parameters include Ru-cymene centroid = 1.6902â (17)â Å, Ru-I = 2.6958â (5)â Å, [Ru-N]avg = 2.072â (3)â Å, N1-Ru-N2 = 76.86â (12)° and a dihedral angle between the planes of the two rings of the bipyridyl system of 5.9â (2)°. The PF6 - ion was treated with a twofold disorder model, refining to a 65.0â (8):35.0â (8) occupancy ratio. The crystal packing features C-Hâ¯F/I inter-actions.
RESUMO
A theoretical study on the reaction mechanisms of the addition of transition metal oxo complexes of the type MO3Cl (M = Mn, Tc, and Re) to tetramethylethylene (TME) is presented. Theoretical calculations using B3LYP/LACVP* and M06/LACVP* (LACVP* is a combination of the 6-31G(d) basis set along with LANL2DZ pseudopotentials on the metallic centres) were performed and the results are discussed within the framework of reaction energetics. The nature of the stability of the reaction mechanisms was equivalent for both theories. However, the M06/LACVP* simulations generally had slightly lower energies and shorter bond lengths compared to the B3LYP/LACVP* computations. Furthermore, it was observed that the reaction does not proceed via the stepwise reaction mechanism due to kinetic and thermodynamic instabilities. Epoxidation was also found to occur via the [2 + 2] concerted reaction mechanism for the MO3Cl (M = Tc and Re) whereas the permanganyl chloride complex epoxidizes TME via the [2 + 1] concerted reaction mechanism on the singlet potential energy surface (PES). Dioxylation was observed to proceed via the [3 + 2] route for the addition of MO3Cl (M = Tc and Re) and TME. Results indicate that all reaction surfaces were unselective except for the permanganyl chloride catalyzed surface which leads to the formation of epoxides exclusively. Changes in temperatures from 298.15 K to 373.15 K, resulted in kinetically and thermodynamically unstable reaction pathways as the activation and reaction energies increased generally. On the singlet PES, the rate constant calculations showed that the [3 + 2] catalyzed surface reaction mechanism leading to dioxylation was faster than the [2 + 2] mechanism in cases where plausible. Theoretical values from the global reactivity parameters, namely the chemical hardness, chemical potential, electrophilic and nucleophilic indices, are in good correlation with the DFT activation and reaction energies at both levels of theories. Thus, as the electrophilic nature of the metal decreases from Mn to Re, so do the activation and reaction energies increase from Mn to Re, indicating that the higher the electrophilicity of the metal centre, the more spontaneous the oxidation reaction.
Assuntos
Cloretos , Complexos de Coordenação , Oxirredução , Modelos Teóricos , Complexos de Coordenação/químicaRESUMO
The title compound, [RuCl2(C25H22P2)2] or [RuCl2(dppm)2] (dppm = bis-(di-phenyl-phosphan-yl)methane, C25H22P2) crystallizes as two half-mol-ecules (completed by inversion symmetry) in space group P (Z = 2), with the RuII atoms occupying inversion centers at 0,0,0 and 1/2, 1/2, 1/2, respectively. The bidentate phosphane ligands occupy equatorial positions while the chlorido ligands complete the distorted octa-hedral coordination spheres at axial positions. The bite angles of the phosphane chelates are similar for the two mol-ecules [(P-Ru-P)avg. = 71.1°], while there are significant differences in the twisting of the methyl-ene backbone, with a distance of the methyl-ene C atom from the RuP4 plane of 0.659â (2) and 0.299â (3)â Å, respectively, and also for the phenyl substituents for both mol-ecules due to variations in weak C-Hâ¯Cl inter-actions.
RESUMO
We report the X-ray absorption of isolated H3O+ cations at the O 1s edge. The molecular ions were prepared in a flowing afterglow ion source which was designed for the production of small water clusters, protonated water clusters, and hydrated ions. Isolated H2O+ cations have been analyzed for comparison. The spectra show significant differences in resonance energies and widths compared to neutral H2O with resonances shifting to higher energies by as much as 10 eV and resonance widths increasing by as much as a factor of 5. The experimental results are supported by time-dependent density functional theory calculations performed for both molecular cations, showing a good agreement with the experimental data. The spectra reported here could enable the identification of the individual molecules in charged small water clusters or liquid water using X-ray absorption spectroscopy.
RESUMO
Chiral cis-MoO2(acac)2 racemizes via four pathways that agree with and extend upon Muetterties' topological analysis for dynamic MX2(chel)2 complexes. Textbook Ray-Dutt and Bailar twists are the least favored with barriers of 27.5 and 28.7 kcal/mol, respectively. Rotating both acac ligands of the Bailar structure by 90° gives the lower Conte-Hippler twist (20.0 kcal/mol), which represents a valley-ridge inflection that invokes the trans isomer. The most favorable is a new twist that was found by 90° rotation of only one acac ligand of the Bailar structure. The gas-phase barrier of 17.4 kcal/mol for this Dhimba-Muller-Lammertsma twist further decreases upon inclusion of the effects of solvents to 16.3 kcal/mol (benzene), 16.2 kcal/mol (toluene), and 15.4 kcal/mol (chloroform), which are in excellent agreement with the reported experimental values.
RESUMO
A new two-dimensional (2D) coordination polymer (CP) [La(C18H14N3O6)2(H2O)(OH)]n has been prepared from a 1,2,3-triazole linker and lanthanum nitrate hexahydrate in DMF. The La-CP was characterized by single-crystal X-ray crystallography, highlighting the binding motif at La ions and the fact that the material contains channels with entrapped solvent. The CP showed good catalytic activity for the oxidation of a wide variety of olefins (linear, cyclic, aromatic, and functionalized alkenes) to aldehydes. Mechanistic studies show that the oxidation reaction proceeds via a non-free-radical mechanism. The catalyst could be recovered and reused five times without major changes in activity for the oxidation of styrene to benzaldehyde.
RESUMO
The oxidation of ethylene catalyzed by manganese and technetium oxo complexes of the type MO3L (M = Tc, Mn, and L = O-, Cl-, F-, OH-, Br-, I-) on both singlet and triplet potential energy surfaces (PESs) have been studied. All molecular structures were stable on the singlet PES except for the formation of the dioxylate intermediate for the MnO3L (L = O-, Cl-, F-, OH-, Br-, I-) catalyzed pathway. Frontier molecular orbital calculations showed that electrons flow from the HOMO of ethylene into the LUMO of the metal-oxo complex for all complexes studied except for MO3L (M = Tc, Mn, and L = O-) where the vice versa occurs. In the reaction of both TcO3L and MnO3L (L = O-, Cl-, F-, OH-, Br-, I-) with ethylene, it was observed that the formation of the dioxylate intermediate along the [3 + 2] addition pathway on the singlet reaction surface is both kinetically and thermodynamically favorable over its formation via the [2 + 2] pathway. Furthermore, it was observed that TcO4- and MnO4- catalyzed pathways exclusively form diols on the singlet PES. The formation of epoxides on the singlet surface is kinetically favorable through the [2 + 1] and [2 + 2] channel for the MnO3L (L = F-, Cl-, Br-, I-, OH-) and TcO3L (L = F-, Cl-, Br-, I-, OH-) catalyzed surfaces respectively. In all cases, the TcO3L complexes were found to be polar compared to the MnO3L complexes. The MnO4- (singlet) and MnO3F (singlet) are the best catalysts for the exclusive formation of the diols and epoxides respectively.
RESUMO
BACKGROUND: Strokes cause an estimated annual health care burden of 170 billion euros across Europe. Atrial fibrillation is one of the major risk factors for stroke and increases the individual risk 4.2-fold. But prevention with anticoagulants may reduce this risk by 70%. Screening methods are employed to detect previously undetected atrial fibrillation. Screening studies in various European countries show a high degree of undetected atrial fibrillation. This study aims to assess the cost-effectiveness of systematic screening with a smartphone application, named Preventicus Heartbeats. It is a hands-on screening tool for use on smartphone to diagnose AF with high sensitivity and specificity. METHODS: A previously published model for calculating screening cost-effectiveness was extended to 6 European countries covering a wide range in terms of treatment costs and epidemiologic parameters. RESULTS: The use of screening lowers the cost per case in countries with comparatively high levels of health care costs (Switzerland: -75; UK: -7). Moderate higher costs per case were observed in 4 countries (Greece: 6; Netherlands: 15). Low levels of health care costs result in less or no potential for further cost reduction (Poland: 20; Serbia: 33). In all countries considered, the model showed an increase in effectiveness measures both in the number of strokes avoided and the quality adjusted life years. The number of strokes avoided per 1000 participants ranged from 2.52 (Switzerland) to 4.44 (Poland). Quality-adjusted life-years per case gained from screening ranged from 0.0105 (Switzerland) to 0.0187 (Poland). The screening procedure dominated in two countries (Switzerland, UK). For the remaining countries, the incremental cost effectiveness ratio ranged from 489/QALY (Greece) to 2548/QALY (Serbia). CONCLUSION: The model results showed a strong dependence of the results on the country-specific costs for stroke treatment. The use of the investigated screening method is close to cost-neutral or cost-reducing in the Western European countries and Greece. In countries with low price levels, higher cost increases due to AF screening are to be expected. Lower costs of anticoagulation, which are expected due to the upcoming patent expiry of direct anticoagulants, have a positive effect on the cost result.
RESUMO
INTRODUCTION: Until recently, adjuvant treatment options for higher stage resectable cutaneous melanoma were limited. Two studies with a similar set-up, published 2017, led to registration of targeted therapy for BRAF-mutated melanoma with dabrafenib and trametinib as well as of the immunotherapy with nivolumab irrespective of BRAF-mutation status. Both options have been positively assessed in Germany since 2019 for the adjuvant treatment of BRAF-V600 mutated melanoma. This study evaluates the cost-effectiveness of both treatment alternatives (dabrafenib/trametinib and nivolumab) against observation as a comparative therapy from the perspective of German statutory health funds. METHODS: Partitioned survival analysis based on published survival curves for the investigated treatment options was used for a cohort model for the health states relapse free survival, progression, and death. The partitioned survival analysis approach was based on the survival curves published for the key studies Combi AD and Checkmate-238. The modelling was performed for the remaining lifetime for a cohort with starting age of 50 years. For extrapolation of the survival curves, convergence to general population mortality rates was assumed in the long term. Within the progression state, a Markov model uses three levels of progressions (locoregional, distant metastases with 1st and 2nd line treatment). Lifetime treatment costs were calculated using the German statutory health fund reimbursement scheme. Quality adjusted life years (QALYs) associated to the health states were adopted from previously published utilities based on the Combi AD study. RESULTS: The treatment with dabrafenib/trametinib yielded an increase in quality adjusted life years of 2.28 QALY at an incremental lifetime cost of 86.1 T. The incremental cost effectiveness ratio of dabrafenib/trametinib and nivolumab was comparable with 37.8 T/QALY and 30.0 T/QALY, respectively. Several sensitivity analyses proved the result to be insensitive. General model parameters like discount rate and length of the time horizon had stronger influence. For nivolumab, the model showed lower discounted lifetime costs (118.1 T) compared to dabrafenib/trametinib [155.1 T], associated with a lower gain in QALYs (1.64 years) compared to observation. CONCLUSION: Both dabrafenib/trametinib and nivolumab turned out to be cost effective within internationally accepted Incremental Cost Effectiveness Ratio (ICER) thresholds with comparable cost effectiveness ratios.
RESUMO
Bacterial resistance to antimicrobial agents is increasing at an alarming rate globally and requires new lead compounds for antibiotics. In this study, N-phenyl-N-nitroso hydroxylamine (cupferron) and its derivatives have been synthesised using readily available starting materials. The compounds were obtained in high yield and purity. They show activity towards a range of Gram-positive and Gram-negative pathogenic bacteria, with minimum inhibitory concentration (MIC) values as low as 2 µg.mL-1 against the tested organisms, especially for Gram-positive species. Toxicity studies on the lead compound 3b indicate insignificant effects on healthy cell lines. Molecular docking studies on the lead compound identify possible binding modes of the compound, and the results obtained correlate with those of in vitro and MIC studies. The lead compound shows excellent drug-likeness properties.
Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Simulação de Acoplamento Molecular , Nitrosaminas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nitrosaminas/síntese química , Nitrosaminas/química , Relação Estrutura-AtividadeRESUMO
Compared to the medical, economic and social implications of COVID-19 vaccinations, little attention has been paid to the ecological balance to date. This study is an attempt to estimate the environmental impact of two mRNA vaccines in terms of CO2 equivalents with respect to their different freezing strategies and supply chain organization. Although it is impossible to accurately calculate the actual environmental impact of the new biochemical synthesis technology, it becomes apparent that transport accounts for up to 99% of the total carbon footprint. The emissions for air freight, road transportation and last-mile delivery are nearly as 19 times the emissions generated from ultra-deep freeze technologies, the production of dry ice, glass and medical polymers for packaging. The carbon footprint of a single mRNA vaccine dose injected into a patient is about 0.01 to 0.2 kg CO2 equivalents, depending on the cooling technology and the logistic routes to the vaccination sites in Germany.