Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38989578

RESUMO

BACKGROUND: Mitral valve (MV) disease including myxomatous degeneration is the most common form of valvular heart disease with an age-dependent frequency. Genetic evidence indicates that mutations of the transcription factor FOXC1 are associated with MV defects, including MV regurgitation. In this study, we sought to determine whether murine Foxc1 and its closely related factor, Foxc2, are required in valvular endothelial cells (VECs) for the maintenance of MV leaflets, including VEC junctions and the stratified trilaminar ECM (extracellular matrix). METHODS: Adult mice carrying tamoxifen-inducible, vascular endothelial cell (EC), and lymphatic EC-specific, compound Foxc1;Foxc2 mutations (ie, EC-Foxc-DKO and lymphatic EC-Foxc-DKO mice, respectively) were used to study the function of Foxc1 and Foxc2 in the maintenance of MVs. The EC and lymphatic EC mutations of Foxc1/c2 were induced at 7 to 8 weeks of age by tamoxifen treatment, and abnormalities in the MVs of these mutant mice were assessed via whole-mount immunostaining, immunohistochemistry/RNAscope, Movat pentachrome/Masson Trichrome staining, and Evans blue injection. RESULTS: EC deletions of Foxc1 and Foxc2 in mice resulted in abnormally extended and thicker MVs by causing defects in the regulation of ECM organization with increased proteoglycan and decreased collagen. Notably, reticular adherens junctions were found in VECs of control MV leaflets, and these reticular structures were severely disrupted in EC-Foxc-DKO mice. PROX1 (prospero homeobox protein 1), a key regulator in a subset of VECs on the fibrosa side of MVs, was downregulated in EC-Foxc1/c2 mutant VECs. Furthermore, we determined the precise location of lymphatic vessels in murine MVs, and these lymphatic vessels were aberrantly expanded and dysfunctional in EC-Foxc1/c2 mutant MVs. Lymphatic EC deletion of Foxc1/c2 also resulted in similar structural/ECM abnormalities as seen in EC-Foxc1/c2 mutant MVs. CONCLUSIONS: Our results indicate that Foxc1 and Foxc2 are required for maintaining the integrity of the MV, including VEC junctions, ECM organization, and lymphatic vessel formation/function to prevent myxomatous MV degeneration.

2.
J Clin Invest ; 134(13)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722697

RESUMO

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, the hearts underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA sequencing revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in α-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes, resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.


Assuntos
Proliferação de Células , Mitocôndrias Cardíacas , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Camundongos Knockout , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Glucose/metabolismo
3.
J Leukoc Biol ; 115(6): 996-998, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38527802

RESUMO

Glycosylated RNA molecules that can be bound by lectins have been demonstrated on the surfaces of leukocytes, but their physiologic function(s) was not known. A recent study (PMID 38262409) demonstrates that at least 1 function is to promote capture and rolling of neutrophils in the vasculature. Of interest, the neutrophil glycosylated RNA molecules bind to P-selectin but not E-selectin.


Assuntos
Neutrófilos , Humanos , Neutrófilos/metabolismo , Animais , Glicosilação , Migração e Rolagem de Leucócitos , RNA/metabolismo , Selectina E/metabolismo , Selectina-P/metabolismo , Membrana Celular/metabolismo
4.
Am J Pathol ; 194(5): 628-636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309429

RESUMO

Neutrophils are an important cell type often considered the body's first responders to inflammatory insult or damage. They are recruited to the tissue of the lungs in patients with inflammatory airspace diseases and have unique and complex functions that range from helpful to harmful. The uniqueness of these functions is due to the heterogeneity of the inflammatory cascade and retention in the vasculature. Neutrophils are known to marginate, or remain stagnant, in the lungs even in nondisease conditions. This review discusses the ways in which the recruitment, presence, and function of neutrophils in the airspace of the lungs are unique from those of other tissues, and the complex effects of neutrophils on pathogenesis. Inflammatory mediators produced by neutrophils, such as neutrophil elastase, proresolving mediators, and neutrophil extracellular traps, dramatically affect the outcomes of patients with disease of the lungs.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Humanos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Pulmão , Armadilhas Extracelulares/metabolismo
5.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015629

RESUMO

Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels. To clarify the consequences of Notch3 loss in the brain vasculature, we used single-cell transcriptomics and found that Notch3 inactivation alters regulation of calcium and contractile function and promotes a notable increase in extracellular matrix. These alterations adversely impact vascular reactivity, manifesting as dilation, tortuosity, microaneurysms, and decreased cerebral blood flow, as observed by MRI. Combined, these vascular impairments hinder glymphatic flow and result in buildup of glycosaminoglycans within the brain parenchyma. Remarkably, this phenomenon mirrors a key pathological feature found in brains of patients with CADASIL, a hereditary vascular dementia associated with NOTCH3 missense mutations. Additionally, single-cell RNA sequencing of the neuronal compartment in aging Notch3-null mice unveiled patterns reminiscent of those observed in neurodegenerative diseases. These findings offer direct evidence that age-related NOTCH3 deficiencies trigger a progressive decline in vascular function, subsequently affecting glymphatic flow and culminating in neurodegeneration.


Assuntos
Encéfalo , Demência Vascular , Receptor Notch3 , Animais , Humanos , Camundongos , Encéfalo/metabolismo , CADASIL/genética , CADASIL/patologia , Demência Vascular/metabolismo , Camundongos Knockout , Mutação , Receptor Notch3/genética
6.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643615

RESUMO

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Assuntos
Migração Transendotelial e Transepitelial , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Camundongos , Adesão Celular , Movimento Celular , Endotélio Vascular , Mecanotransdução Celular , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Cancer Discov ; 13(9): 2050-2071, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272843

RESUMO

Most circulating tumor cells (CTC) are detected as single cells, whereas a small proportion of CTCs in multicellular clusters with stemness properties possess 20- to 100-times higher metastatic propensity than the single cells. Here we report that CTC dynamics in both singles and clusters in response to therapies predict overall survival for breast cancer. Chemotherapy-evasive CTC clusters are relatively quiescent with a specific loss of ST6GAL1-catalyzed α2,6-sialylation in glycoproteins. Dynamic hyposialylation in CTCs or deficiency of ST6GAL1 promotes cluster formation for metastatic seeding and enables cellular quiescence to evade paclitaxel treatment in breast cancer. Glycoproteomic analysis reveals newly identified protein substrates of ST6GAL1, such as adhesion or stemness markers PODXL, ICAM1, ECE1, ALCAM1, CD97, and CD44, contributing to CTC clustering (aggregation) and metastatic seeding. As a proof of concept, neutralizing antibodies against one newly identified contributor, PODXL, inhibit CTC cluster formation and lung metastasis associated with paclitaxel treatment for triple-negative breast cancer. SIGNIFICANCE: This study discovers that dynamic loss of terminal sialylation in glycoproteins of CTC clusters contributes to the fate of cellular dormancy, advantageous evasion to chemotherapy, and enhanced metastatic seeding. It identifies PODXL as a glycoprotein substrate of ST6GAL1 and a candidate target to counter chemoevasion-associated metastasis of quiescent tumor cells. This article is featured in Selected Articles from This Issue, p. 1949.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Células Neoplásicas Circulantes/metabolismo , Paclitaxel/uso terapêutico , Glicoproteínas , Biomarcadores Tumorais , Metástase Neoplásica
8.
Curr Protoc ; 3(4): e739, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37078364

RESUMO

Inflammation is the body's response to injury and harmful stimuli and contributes to a range of infectious and noninfectious diseases. Inflammation occurs through a series of well-defined leukocyte-endothelial cell interactions, including rolling, activation, adhesion, transmigration, and subsequent migration through the extracellular matrix. Being able to visualize the stages of inflammation is important for a better understanding of its role in diseases processes. Detailed in this article are protocols for imaging immune cell infiltration and transendothelial migration in vascular tissue beds, including those in the mouse ear, cremaster muscle, brain, lung, and retina. Also described are protocols for inducing inflammation and quantifying leukocytes with FIJI imaging software. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Induction of croton oil dermatitis Alternate Protocol 1: Induction of croton oil dermatitis using genetically fluorescent mice Basic Protocol 2: Intravital microscopy of the mouse cremaster muscle Support Protocol: Making a silicone stage Basic Protocol 3: Wide-field microscopy of the mouse brain Basic Protocol 4: Imaging the lungs (ex vivo) Alternate Protocol 2: Inflating the lungs without tracheostomy Basic Protocol 5: Inducing, imaging, and quantifying infiltration of leukocytes in mouse retina.


Assuntos
Dermatite , Migração Transendotelial e Transepitelial , Camundongos , Animais , Óleo de Cróton , Leucócitos/fisiologia , Inflamação/diagnóstico por imagem
9.
Cell Rep ; 42(2): 112127, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795563

RESUMO

Glioblastoma (GBM) is one of the most aggressive tumors in the adult central nervous system. We previously revealed that circadian regulation of glioma stem cells (GSCs) affects GBM hallmarks of immunosuppression and GSC maintenance in a paracrine and autocrine manner. Here, we expand the mechanism involved in angiogenesis, another critical GBM hallmark, as a potential basis underlying CLOCK's pro-tumor effect in GBM. Mechanistically, CLOCK-directed olfactomedin like 3 (OLFML3) expression results in hypoxia-inducible factor 1-alpha (HIF1α)-mediated transcriptional upregulation of periostin (POSTN). As a result, secreted POSTN promotes tumor angiogenesis via activation of the TANK-binding kinase 1 (TBK1) signaling in endothelial cells. In GBM mouse and patient-derived xenograft models, blockade of the CLOCK-directed POSTN-TBK1 axis inhibits tumor progression and angiogenesis. Thus, the CLOCK-POSTN-TBK1 circuit coordinates a key tumor-endothelial cell interaction and represents an actionable therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Relógios Circadianos , Glioblastoma , Glioma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Relógios Circadianos/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Glioblastoma/patologia , Glioma/patologia , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Neoplásicas/metabolismo
10.
J Immunol ; 209(5): 1001-1012, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914838

RESUMO

CD99-like 2 (CD99L2 [L2]) is a highly glycosylated 52-kDa type 1 membrane protein that is important for leukocyte transendothelial migration (TEM) in mice. Inhibiting L2 using function-blocking Ab significantly reduces the recruitment of leukocytes to sites of inflammation in vivo. Similarly, L2 knockout mice have an inherent defect in leukocyte transmigration into sites of inflammation. However, the role of L2 in inflammation has only been studied in mice. Furthermore, the mechanism by which it regulates TEM is not known. To study the relevance to human inflammation, we studied the role of L2 on primary human cells in vitro. Our data show that like PECAM and CD99, human L2 is constitutively expressed at the borders of endothelial cells and on the surface of leukocytes. Inhibiting L2 using Ab blockade or genetic knockdown significantly reduces transmigration of human neutrophils and monocytes across endothelial cells. Furthermore, our data also show that L2 regulates a specific, sequential step of TEM between PECAM and CD99, rather than operating in parallel or redundantly with these molecules. Similar to PECAM and CD99, L2 promotes transmigration by recruiting the lateral border recycling compartment to sites of TEM, specifically downstream of PECAM initiation. Collectively, our data identify a novel functional role for human L2 in TEM and elucidate a mechanism that is distinct from PECAM and CD99.


Assuntos
Células Endoteliais , Leucócitos , Antígeno 12E7 , Animais , Movimento Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos/metabolismo , Camundongos , Monócitos/metabolismo , Neutrófilos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
11.
Am J Pathol ; 192(11): 1619-1632, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952762

RESUMO

The infiltration of polymorphonuclear leukocytes (PMNs) in ischemia-reperfusion injury (I/RI) has been implicated as a critical component of inflammatory damage following ischemic stroke. However, successful blockade of PMN transendothelial migration (TEM) in preclinical studies has not translated to meaningful clinical outcomes. To investigate this further, leukocyte infiltration patterns were quantified, and these patterns were modulated by blocking platelet endothelial cell adhesion molecule-1 (PECAM), a key regulator of TEM. LysM-eGFP mice and microscopy were used to visualize all myeloid leukocyte recruitment following ischemia/reperfusion. Visual examination showed heterogeneous leukocyte distribution across the infarct at both 24 and 72 hours after I/RI. A semiautomated process was designed to precisely map PMN position across brain sections. Treatment with PECAM function-blocking antibodies did not significantly affect total leukocyte recruitment but did alter their distribution, with more observed at the cortex at both early and later time points (24 hours: 89% PECAM blocked vs. 72% control; 72 hours: 69% PECAM blocked vs. 51% control). This correlated with a decrease in infarct volume. These findings suggest that TEM, in the setting of I/RI in the cerebrovasculature, occurs primarily at the cortical surface. The reduction of stroke size with PECAM blockade suggests that infiltrating PMNs may exacerbate I/RI and indicate the potential therapeutic benefit of regulating the timing and pattern of leukocyte infiltration after stroke.


Assuntos
AVC Isquêmico , Animais , Camundongos , Adesão Celular , Endotélio Vascular/metabolismo , Infarto , Infiltração de Neutrófilos , Neutrófilos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
12.
Geroscience ; 44(3): 1241-1254, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35538386

RESUMO

BACKGROUND: Persistent viral RNA shedding of SARS-CoV-2 following COVID-19 has increasingly been recognized, with limited understanding of its implications on outcomes in hospitalized COVID-19 patients. METHODS: We retrospectively assessed for persistent viral shedding across Northwestern Medicine Healthcare (NMHC) patients between March and August 2020. We assessed for predictors of persistent viral shedding, in-hospital delirium, and six-month mortality using binary logistic regression. RESULTS: Of the 2,518 hospitalized patients with an RT-PCR-confirmed diagnosis of COVID-19, 959 underwent repeat SARS-CoV-2 RT-PCR at least fourteen days from initial positive testing. Of those, 405 (42.2%) patients were found to have persistent viral shedding. Persistent viral shedding was associated with male sex, increased BMI, diabetes mellitus, chronic kidney disease, and exposure to corticosteroids during initial COVID-19 hospitalization. Persistent viral shedding was independently associated with incidence of in-hospital delirium after adjusting for factors including severity of respiratory dysfunction (OR 2.45; 95% CI 1.75, 3.45). Even after adjusting for age, severity of respiratory dysfunction, and occurrence of in-hospital delirium, persistent viral shedding remained significantly associated with increased six-month mortality (OR 2.43; 95% CI 1.42, 4.29). CONCLUSIONS: Persistent viral shedding occurs frequently in hospitalized COVID-19 patients and is associated with in-hospital delirium and increased six-month mortality.


Assuntos
COVID-19 , Delírio , Delírio/epidemiologia , Humanos , Incidência , Masculino , RNA Viral/análise , Estudos Retrospectivos , SARS-CoV-2 , Eliminação de Partículas Virais
13.
Am J Pathol ; 192(2): 295-307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767810

RESUMO

Peripheral monocyte-derived CX3C chemokine receptor 1 positive (CX3CR1+) cells play important roles in tissue homeostasis and gut repopulation. Increasing evidence also supports their role in immune repopulation of the brain parenchyma in response to systemic inflammation. Adoptive bone marrow transfer from CX3CR1 fluorescence reporter mice and high-resolution confocal microscopy was used to assess the time course of CX3CR1+ cell repopulation of steady-state and dextran sodium sulfate (DSS)-inflamed small intestine/colon and the brain over 4 weeks after irradiation. CX3CR1+ cell colonization and morphologic polarization into fully ramified cells occurred more rapidly in the small intestine than in the colon. For both organs, the crypt/mucosa was more densely populated than the serosa/muscularis layer, indicating preferential temporal and spatial occupancy. Repopulation of the brain was delayed compared with that of gut tissue, consistent with the immune privilege of this organ. However, DSS-induced colon injury accelerated the repopulation. Expression analyses confirmed increased chemokine levels and macrophage colonization within the small intestine/colon and the brain by DSS-induced injury. Early increases of transmembrane protein 119 and ionized calcium binding adaptor molecule 1 expression within the brain after colon injury suggest immune-priming effect of brain resident microglia in response to systemic inflammation. These findings identify temporal differences in immune repopulation of the gut and brain in response to inflammation and show that gut inflammation can impact immune responses within the brain.


Assuntos
Lesões Encefálicas/imunologia , Encéfalo/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Colite/imunologia , Mucosa Intestinal/imunologia , Monócitos/imunologia , Lesões Experimentais por Radiação/metabolismo , Animais , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Receptor 1 de Quimiocina CX3C/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Sulfato de Dextrana/toxicidade , Mucosa Intestinal/fisiologia , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/patologia
14.
Nat Commun ; 12(1): 4867, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381029

RESUMO

Circulating tumor cell (CTC) clusters mediate metastasis at a higher efficiency and are associated with lower overall survival in breast cancer compared to single cells. Combining single-cell RNA sequencing and protein analyses, here we report the profiles of primary tumor cells and lung metastases of triple-negative breast cancer (TNBC). ICAM1 expression increases by 200-fold in the lung metastases of three TNBC patient-derived xenografts (PDXs). Depletion of ICAM1 abrogates lung colonization of TNBC cells by inhibiting homotypic tumor cell-tumor cell cluster formation. Machine learning-based algorithms and mutagenesis analyses identify ICAM1 regions responsible for homophilic ICAM1-ICAM1 interactions, thereby directing homotypic tumor cell clustering, as well as heterotypic tumor-endothelial adhesion for trans-endothelial migration. Moreover, ICAM1 promotes metastasis by activating cellular pathways related to cell cycle and stemness. Finally, blocking ICAM1 interactions significantly inhibits CTC cluster formation, tumor cell transendothelial migration, and lung metastasis. Therefore, ICAM1 can serve as a novel therapeutic target for metastasis initiation of TNBC.


Assuntos
Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Pulmonares/secundário , Células Neoplásicas Circulantes/patologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Agregação Celular , Ciclo Celular , Transformação Celular Neoplásica , Humanos , Molécula 1 de Adesão Intercelular/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Células Neoplásicas Circulantes/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Migração Transendotelial e Transepitelial , Neoplasias de Mama Triplo Negativas/metabolismo
15.
Immunity ; 54(9): 1989-2004.e9, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34363750

RESUMO

The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.


Assuntos
Autofagia/fisiologia , Células Endoteliais/fisiologia , Infiltração de Neutrófilos/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Animais , Quimiotaxia de Leucócito/fisiologia , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Junções Intercelulares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia
16.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32970800

RESUMO

Endothelial cell calcium flux is critical for leukocyte transendothelial migration (TEM), which in turn is essential for the inflammatory response. Intravital microscopy of endothelial cell calcium dynamics reveals that calcium increases locally and transiently around the transmigration pore during TEM. Endothelial calmodulin (CaM), a key calcium signaling protein, interacts with the IQ domain of IQGAP1, which is localized to endothelial junctions and is required for TEM. In the presence of calcium, CaM binds endothelial calcium/calmodulin kinase IIδ (CaMKIIδ). Disrupting the function of CaM or CaMKII with small-molecule inhibitors, expression of a CaMKII inhibitory peptide, or expression of dominant negative CaMKIIδ significantly reduces TEM by interfering with the delivery of the lateral border recycling compartment (LBRC) to the site of TEM. Endothelial CaMKII is also required for TEM in vivo as shown in two independent mouse models. These findings highlight novel roles for endothelial CaM and CaMKIIδ in transducing the spatiotemporally restricted calcium signaling required for TEM.


Assuntos
Sinalização do Cálcio , Células Endoteliais/metabolismo , Leucócitos/metabolismo , Migração Transendotelial e Transepitelial , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Camundongos , Camundongos Transgênicos
17.
J Exp Med ; 217(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32941595

RESUMO

In this issue of JEM, Hong et al. (https://doi.org/10.1084/jem.20200140) identify a major step in the pathogenesis of cerebral cavernous malformations (CCMs), which at the same time offers insight into potential therapy for this disease.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Proteína ADAMTS5 , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Humanos , Proteólise , Fatores de Transcrição/genética , Versicanas
18.
J Neuropathol Exp Neurol ; 79(6): 641-646, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32346735

RESUMO

Spinocerebellar ataxia type 3 (SCA3), also known by the eponym Machado-Joseph disease, is an autosomal dominant CAG trinucleotide (polyglutamine) repeat disease that presents in young- to middle-aged adults. SCA3 was first described in Azorean individuals and has interesting epidemiological patterns. It is characterized clinically by progressive ataxia and neuropathologically by progressive degenerative changes in the spinal cord and cerebellum, along with degeneration of the cortex and basal ganglia. Here, we describe the clinical and neuropathologic features in a case of SCA3 with unique findings, including involvement of the inferior olivary nucleus and cerebellar Purkinje cell layer, which are classically spared in the disease. We also discuss research into the disease mechanisms of SCA3 and the potential for therapeutic intervention.


Assuntos
Cerebelo/patologia , Doença de Machado-Joseph/patologia , Núcleo Olivar/patologia , Células de Purkinje/patologia , Idoso , Feminino , Humanos
19.
Am J Pathol ; 190(5): 918-933, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32201265

RESUMO

The recent movement toward returning individual research results to study subjects/participants generates ethical and legal challenges for laboratories performing research on human biospecimens. The concept of an individual's interest in knowing the results of testing on their tissue is pitted against individual and systemic risks and an established legal framework regulating the performance of laboratory testing for medical care purposes. This article discusses the rationale for returning individual research results to subjects, the potential risks associated with returning these results, and the legal framework in the United States that governs testing of identifiable human biospecimens. On the basis of these considerations, this article provides recommendations for investigators to consider when planning and executing human biospecimen research, with the objective of appropriately balancing the interests of research subjects, the need for ensuring integrity of the research process, and compliance with US laws and regulations.


Assuntos
Pesquisa Biomédica/ética , Humanos , Estados Unidos
20.
Fluids Barriers CNS ; 17(1): 3, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32008573

RESUMO

BACKGROUND: The brain barriers establish compartments in the central nervous system (CNS) that significantly differ in their communication with the peripheral immune system. In this function they strictly control T-cell entry into the CNS. T cells can reach the CNS by either crossing the endothelial blood-brain barrier (BBB) or the epithelial blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP). OBJECTIVE: Analysis of the cellular and molecular mechanisms involved in the migration of different human CD4+ T-cell subsets across the BBB versus the BCSFB. METHODS: Human in vitro models of the BBB and BCSFB were employed to study the migration of circulating and CNS-entry experienced CD4+ T helper cell subsets (Th1, Th1*, Th2, Th17) across the BBB and BCSFB under inflammatory and non-inflammatory conditions in vitro. RESULTS: While under non-inflammatory conditions Th1* and Th1 cells preferentially crossed the BBB, under inflammatory conditions the migration rate of all Th subsets across the BBB was comparable. The migration of all Th subsets across the BCSFB from the same donor was 10- to 20-fold lower when compared to their migration across the BBB. Interestingly, Th17 cells preferentially crossed the BCSFB under both, non-inflamed and inflamed conditions. Barrier-crossing experienced Th cells sorted from CSF of MS patients showed migratory characteristics indistinguishable from those of circulating Th cells of healthy donors. All Th cell subsets could additionally cross the BCSFB from the CSF to ChP stroma side. T-cell migration across the BCSFB involved epithelial ICAM-1 irrespective of the direction of migration. CONCLUSIONS: Our observations underscore that different Th subsets may use different anatomical routes to enter the CNS during immune surveillance versus neuroinflammation with the BCSFB establishing a tighter barrier for T-cell entry into the CNS compared to the BBB. In addition, CNS-entry experienced Th cell subsets isolated from the CSF of MS patients do not show an increased ability to cross the brain barriers when compared to circulating Th cell subsets from healthy donors underscoring the active role of the brain barriers in controlling T-cell entry into the CNS. Also we identify ICAM-1 to mediate T cell migration across the BCSFB.


Assuntos
Barreira Hematoencefálica/imunologia , Linfócitos T CD4-Positivos/citologia , Células Epiteliais/citologia , Subpopulações de Linfócitos T/citologia , Transporte Biológico/imunologia , Movimento Celular/imunologia , Sistema Nervoso Central/imunologia , Plexo Corióideo/imunologia , Plexo Corióideo/fisiologia , Células Endoteliais/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA