Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Microbiol ; 25(2): 268-282, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345893

RESUMO

Predicting microbial metabolic rates and emergent biogeochemical fluxes remains challenging due to the many unknown population dynamical, physiological and reaction-kinetic parameters and uncertainties in species composition. Here, we show that the need for these parameters can be eliminated when population dynamics and reaction kinetics operate at much shorter time scales than physical mixing processes. Such scenarios are widespread in poorly mixed water columns and sediments. In this 'fast-reaction-transport' (FRT) limit, all that is required for predictions are chemical boundary conditions, the physical mixing processes and reaction stoichiometries, while no knowledge of species composition, physiology or population/reaction kinetic parameters is needed. Using time-series data spanning years 2001-2014 and depths 180-900 m across the permanently anoxic Cariaco Basin, we demonstrate that the FRT approach can accurately predict the dynamics of major electron donors and acceptors (Pearson r ≥ 0.9 in all cases). Hence, many microbial processes in this system are largely transport limited and thus predictable regardless of species composition, population dynamics and kinetics. Our approach enables predictions for many systems in which microbial community dynamics and kinetics are unknown. Our findings also reveal a mechanism for the frequently observed decoupling between function and taxonomy in microbial systems.


Assuntos
Microbiota , Cinética
2.
Estuaries Coast ; 45(3): 913-919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401066

RESUMO

Sea-level rise is impacting the longest undeveloped stretch of coastline in the contiguous United States: The Florida Big Bend. Due to its low elevation and a higher-than-global-average local rate of sea-level rise, the region is losing coastal forest to encroaching marsh at an unprecedented rate. Previous research found a rate of forest-to-marsh conversion of up to 1.2 km2 year-1 during the nineteenth and twentieth centuries, but these studies evaluated small-scale changes, suffered from data gaps, or are substantially outdated. We replicated and updated these studies with Landsat satellite imagery covering the entire Big Bend region from 2003 to 2016 and corroborated results with in situ landscape photography and high-resolution aerial imagery. Our analysis of satellite and aerial images from 2003 to 2016 indicates a rate of approximately 10 km2 year-1 representing an increase of over 800%. Areas previously found to be unaffected by the decline are now in rapid retreat.

3.
Biol Rev Camb Philos Soc ; 97(4): 1511-1538, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35415952

RESUMO

Biodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well-being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize, and interpret biodiversity observation data from diverse sources. Mapping and analyzing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within-species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modeling, and technological advances. We propose four Genetic EBVs: (i) Genetic Diversity; (ii) Genetic Differentiation; (iii) Inbreeding; and (iv) Effective Population Size (Ne ). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modeling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large-scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species' long-term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.


Assuntos
Biodiversidade , Ecossistema , Conservação dos Recursos Naturais/métodos , Variação Genética , Humanos , Densidade Demográfica
4.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37632753

RESUMO

Omic BON is a thematic Biodiversity Observation Network under the Group on Earth Observations Biodiversity Observation Network (GEO BON), focused on coordinating the observation of biomolecules in organisms and the environment. Our founding partners include representatives from national, regional, and global observing systems; standards organizations; and data and sample management infrastructures. By coordinating observing strategies, methods, and data flows, Omic BON will facilitate the co-creation of a global omics meta-observatory to generate actionable knowledge. Here, we present key elements of Omic BON's founding charter and first activities.


Assuntos
Biodiversidade , Conhecimento
7.
Nat Ecol Evol ; 5(7): 896-906, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33986541

RESUMO

Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.


Assuntos
Benchmarking , Ecossistema , Biodiversidade
9.
Mar Pollut Bull ; 163: 111957, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33440264

RESUMO

Environmental conditions influence fecal indicator bacteria (FIB) levels, which are routinely used to characterize recreational water quality. This study examined 15 years of environmental and FIB data at Puntarenas and Jacó beach, Costa Rica. FIB relationships with sea level, wave height, precipitation, direct normal irradiance (DNI), wind, and turbidity were analyzed. Pearson's correlations identified lags between 24 and 96 h among environmental parameters and FIB. Multiple linear regression models composed of environmental parameters explained 24% and 27% of fecal coliforms and enterococci variability in Jacó, respectively. Puntarenas's models explained 17-26% of fecal coliforms and 12-18% enterococci variability. Precipitation, sea level anomalies, and wave height most frequently explained FIB variability. Hypothesis testing often identified significant differences in precipitation, wave height, daily sea level anomalies, and maximum sea level 24 h prior between days with and without FIB threshold exceedance. Unexpected FIB interactions with DNI, sea level, and turbidity highlight the importance of future investigations.


Assuntos
Praias , Qualidade da Água , Enterococcus , Monitoramento Ambiental , Fezes , Microbiologia da Água
10.
Ecosyst People (Abingdon) ; 16(1): 197-211, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32984823

RESUMO

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services(IPBES) strengthens the science-policy interface by producing scientific assessments on biodiversity and ecosystem services to inform policy. IPBES fosters knowledge exchange across disciplines, between researchers and other knowledge holders, practitioners, societal actors and decision makers working at different geographic scales. A number of avenues for participation of stakeholders across the four functions if IPBES exist. Stakeholders come from diverse backgrounds, including Indigenous Peoples and local communities, businesses, and non-governmental organization. They represent multiple sources of information, data, knowledge, and perspectives on biodiversity. Stakeholder engagement in IPBES seeks to 1. communicate, disseminate, and implement the findings of IPBES products; 2. Develop guidelines for biodiversity conservation within member countries; and 3. create linkages between global policy and local actors - all key to the implementation of global agreements on biodiversity. This paper reflects on the role of stakeholders in the first work programme of IPBES (2014-2018). It provides an overview of IPBES processes and products relevant to stakeholders, examines the motivation of stakeholders to engage with IPBES, and explores reflections by the authors (all active participants on the platform) for improved stakeholder engagement and contributions to future work of the platform.

11.
Nat Commun ; 11(1): 254, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937756

RESUMO

Environmental DNA (eDNA) analysis allows the simultaneous examination of organisms across multiple trophic levels and domains of life, providing critical information about the complex biotic interactions related to ecosystem change. Here we used multilocus amplicon sequencing of eDNA to survey biodiversity from an eighteen-month (2015-2016) time-series of seawater samples from Monterey Bay, California. The resulting dataset encompasses 663 taxonomic groups (at Family or higher taxonomic rank) ranging from microorganisms to mammals. We inferred changes in the composition of communities, revealing putative interactions among taxa and identifying correlations between these communities and environmental properties over time. Community network analysis provided evidence of expected predator-prey relationships, trophic linkages, and seasonal shifts across all domains of life. We conclude that eDNA-based analyses can provide detailed information about marine ecosystem dynamics and identify sensitive biological indicators that can suggest ecosystem changes and inform conservation strategies.


Assuntos
Biodiversidade , DNA Ambiental/genética , Água do Mar , California , Análise por Conglomerados , Código de Barras de DNA Taxonômico , Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Biologia Marinha , Estações do Ano , Água do Mar/química , Fatores de Tempo
12.
Sensors (Basel) ; 19(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623312

RESUMO

Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel.

13.
Sci Total Environ ; 665: 1053-1063, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30893737

RESUMO

The benefits nature provides to people, called ecosystem services, are increasingly recognized and accounted for in assessments of infrastructure development, agricultural management, conservation prioritization, and sustainable sourcing. These assessments are often limited by data, however, a gap with tremendous potential to be filled through Earth observations (EO), which produce a variety of data across spatial and temporal extents and resolutions. Despite widespread recognition of this potential, in practice few ecosystem service studies use EO. Here, we identify challenges and opportunities to using EO in ecosystem service modeling and assessment. Some challenges are technical, related to data awareness, processing, and access. These challenges require systematic investment in model platforms and data management. Other challenges are more conceptual but still systemic; they are byproducts of the structure of existing ecosystem service models and addressing them requires scientific investment in solutions and tools applicable to a wide range of models and approaches. We also highlight new ways in which EO can be leveraged for ecosystem service assessments, identifying promising new areas of research. More widespread use of EO for ecosystem service assessment will only be achieved if all of these types of challenges are addressed. This will require non-traditional funding and partnering opportunities from private and public agencies to promote data exploration, sharing, and archiving. Investing in this integration will be reflected in better and more accurate ecosystem service assessments worldwide.

14.
Nat Ecol Evol ; 3(4): 539-551, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858594

RESUMO

Species distributions and abundances are undergoing rapid changes worldwide. This highlights the significance of reliable, integrated information for guiding and assessing actions and policies aimed at managing and sustaining the many functions and benefits of species. Here we synthesize the types of data and approaches that are required to achieve such an integration and conceptualize 'essential biodiversity variables' (EBVs) for a unified global capture of species populations in space and time. The inherent heterogeneity and sparseness of raw biodiversity data are overcome by the use of models and remotely sensed covariates to inform predictions that are contiguous in space and time and global in extent. We define the species population EBVs as a space-time-species-gram (cube) that simultaneously addresses the distribution or abundance of multiple species, with its resolution adjusted to represent available evidence and acceptable levels of uncertainty. This essential information enables the monitoring of single or aggregate spatial or taxonomic units at scales relevant to research and decision-making. When combined with ancillary environmental or species data, this fundamental species population information directly underpins a range of biodiversity and ecosystem function indicators. The unified concept we present links disparate data to downstream uses and informs a vision for species population monitoring in which data collection is closely integrated with models and infrastructure to support effective biodiversity assessment.


Assuntos
Biodiversidade , Animais , Modelos Teóricos
15.
J Water Health ; 17(1): 137-148, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30758310

RESUMO

Predicting recreational water quality is key to protecting public health from exposure to wastewater-associated pathogens. It is not feasible to monitor recreational waters for all pathogens; therefore, monitoring programs use fecal indicator bacteria (FIB), such as enterococci, to identify wastewater pollution. Artificial neural networks (ANNs) were used to predict when culturable enterococci concentrations exceeded the U.S. Environmental Protection Agency (U.S. EPA) Recreational Water Quality Criteria (RWQC) at Escambron Beach, San Juan, Puerto Rico. Ten years of culturable enterococci data were analyzed together with satellite-derived sea surface temperature (SST), direct normal irradiance (DNI), turbidity, and dew point, along with local observations of precipitation and mean sea level (MSL). The factors identified as the most relevant for enterococci exceedance predictions based on the U.S. EPA RWQC were DNI, turbidity, cumulative 48 h precipitation, MSL, and SST; they predicted culturable enterococci exceedances with an accuracy of 75% and power greater than 60% based on the Receiving Operating Characteristic curve and F-Measure metrics. Results show the applicability of satellite-derived data and ANNs to predict recreational water quality at Escambron Beach. Future work should incorporate local sanitary survey data to predict risky recreational water conditions and protect human health.


Assuntos
Praias , Enterococcus , Monitoramento Ambiental/métodos , Redes Neurais de Computação , Tecnologia de Sensoriamento Remoto , Microbiologia da Água , Fezes , Humanos , Porto Rico , Imagens de Satélites , Qualidade da Água
16.
Sci Rep ; 9(1): 178, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655587

RESUMO

The northern Gulf of Mexico (GoM) is a region strongly influenced by river discharges of freshwater and nutrients, which promote a highly productive coastal ecosystem that host commercially valuable marine species. A variety of climate and weather processes could potentially influence the river discharges into the northern GoM. However, their impacts on the coastal ecosystem remain poorly described. By using a regional ocean-biogeochemical model, complemented with satellite and in situ observations, here we show that El Niño - Southern Oscillation (ENSO) is a main driver of the interannual variability in salinity and plankton biomass during winter and spring. Composite analysis of salinity and plankton biomass anomalies shows a strong asymmetry between El Niño and La Niña impacts, with much larger amplitude and broader areas affected during El Niño conditions. Further analysis of the model simulation reveals significant coastal circulation anomalies driven by changes in salinity and winds. The coastal circulation anomalies in turn largely determine the spatial extent and distribution of the ENSO-induced plankton biomass variability. These findings highlight that ENSO-induced changes in salinity, plankton biomass, and coastal circulation across the northern GoM are closely interlinked and may significantly impact the abundance and distribution of fish and invertebrates.

17.
Ann Rev Mar Sci ; 11: 413-437, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29889611

RESUMO

The CARIACO (Carbon Retention in a Colored Ocean) Ocean Time-Series Program station, located at 10.50°N, 64.66°W, observed biogeochemical and ecological processes in the Cariaco Basin of the southwestern Caribbean Sea from November 1995 to January 2017. The program completed 232 monthly core cruises, 40 sediment trap deployment cruises, and 40 microbiogeochemical process cruises. Upwelling along the southern Caribbean Sea occurs from approximately November to August. High biological productivity (320-628 g C m-2 y-1) leads to large vertical fluxes of particulate organic matter, but only approximately 9-10 g C m-2 y-1 fall to the bottom sediments (∼1-3% of primary production). A diverse community of heterotrophic and chemoautotrophic microorganisms, viruses, and protozoa thrives within the oxic-anoxic interface. A decrease in upwelling intensity from approximately 2003 to 2013 and the simultaneous overfishing of sardines in the region led to diminished phytoplankton bloom intensities, increased phytoplankton diversity, and increased zooplankton densities. The deepest waters of the Cariaco Basin exhibited long-term positive trends in temperature, salinity, hydrogen sulfide, ammonia, phosphate, methane, and silica. Earthquakes and coastal flooding also resulted in the delivery of sediment to the seafloor. The program's legacy includes climate-quality data from suboxic and anoxic habitats and lasting relationships between international researchers.


Assuntos
Conservação dos Recursos Hídricos/métodos , Monitoramento Ambiental/métodos , Navios , Animais , Carbono/análise , Região do Caribe , Clima , Ecossistema , Pesqueiros/normas , Oceanos e Mares , Fitoplâncton/crescimento & desenvolvimento , Zooplâncton/crescimento & desenvolvimento
18.
Trop Med Infect Dis ; 3(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30274404

RESUMO

Modelling dengue fever in endemic areas is important to mitigate and improve vector-borne disease control to reduce outbreaks. This study applied artificial neural networks (ANNs) to predict dengue fever outbreak occurrences in San Juan, Puerto Rico (USA), and in several coastal municipalities of the state of Yucatan, Mexico, based on specific thresholds. The models were trained with 19 years of dengue fever data for Puerto Rico and six years for Mexico. Environmental and demographic data included in the predictive models were sea surface temperature (SST), precipitation, air temperature (i.e., minimum, maximum, and average), humidity, previous dengue cases, and population size. Two models were applied for each study area. One predicted dengue incidence rates based on population at risk (i.e., numbers of people younger than 24 years), and the other on the size of the vulnerable population (i.e., number of people younger than five years and older than 65 years). The predictive power was above 70% for all four model runs. The ANNs were able to successfully model dengue fever outbreak occurrences in both study areas. The variables with the most influence on predicting dengue fever outbreak occurrences for San Juan, Puerto Rico, included population size, previous dengue cases, maximum air temperature, and date. In Yucatan, Mexico, the most important variables were population size, previous dengue cases, minimum air temperature, and date. These models have predictive skills and should help dengue fever mitigation and management to aid specific population segments in the Caribbean region and around the Gulf of Mexico.

19.
Environ Monit Assess ; 190(7): 436, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29951851

RESUMO

Coastal aquaculture is faced with extreme variation in water quality. The Deeba Triangle on Lake Manzala is the largest marine coastal aquaculture-producing area on the Egyptian Mediterranean. Samples from 16 ponds were taken during four seasons (2014-2015), to investigate the variation of 12 water quality parameters at that region. We tested the hypothesis that there is no spatial or temporal variation in water quality of the fish ponds. Fish ponds were statistically clustered into three groups (p = 0.0005) coincident with their geographical location. Hypersaline and transparent waters characterized the western ponds; higher dissolved oxygen and higher nutrients characterized the central region. These spatial differences were principally due to variations in salinity and nutrients of the water sources used for irrigation of the ponds and to differences in the aeration management styles. Strong seasonality was seen in water temperature (following air temperature), nutrients, and turbidity (following the seasonal cycles of various water sources from the Lake Manzala and the seasonality of the petrochemical plants effluents close to these ponds). We conclude that municipal effluents significantly affected, spatially and temporally, the quality of the irrigation water used for coastal aquaculture purposes, which consequently might affect fish yield.


Assuntos
Aquicultura/estatística & dados numéricos , Monitoramento Ambiental , Lagos/química , Poluentes Químicos da Água/análise , Animais , Egito , Peixes , Lagoas , Estações do Ano , Qualidade da Água/normas
20.
Limnol Oceanogr Methods ; 16(4): 209-221, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29937700

RESUMO

Zooplankton dominate the abundance and biomass of multicellular animals in pelagic marine environments; however, traditional methods to characterize zooplankton communities are invasive and laborious. This study compares zooplankton taxonomic composition revealed through metabarcoding of the cytochrome oxidase I (COI) and 18S rRNA genes to traditional morphological identification by microscopy. Triplicates of three different sample types were collected from three coral reef sites in the Florida Keys National Marine Sanctuary: (1) 1 L surface seawater samples prefiltered through 3 µm filters and subsequently collected on 0.22 µm filters for eDNA (PF-eDNA); (2) 1 L surface seawater samples filtered on 0.22 µm pore-size filters (environmental DNA; eDNA), and (3) zooplankton tissue samples from 64 µm, 200 µm, and 500 µm mesh size net tows. The zooplankton tissue samples were split, with half identified morphologically and tissue DNA (T-DNA) extracted from the other half. The COI and 18S rRNA gene metabarcoding of PF-eDNA, eDNA, and T-DNA samples was performed using Illumina MiSeq. Of the families detected with COI and 18S rRNA gene metabarcoding, 40% and 32%, respectively, were also identified through morphological assessments. Significant differences in taxonomic composition were observed between PF-DNA, eDNA, and T-DNA with both genetic markers. PF-eDNA resulted in detection of fewer taxa than the other two sample types; thus, prefiltering is not recommended. All dominant copepod taxa (> 5% of total abundance) were detected with eDNA, T-DNA, and morphological assessments, demonstrating that eDNA metabarcoding is a promising technique for future biodiversity assessments of pelagic zooplankton in marine systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA