Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Expert Opin Drug Discov ; 15(7): 833-852, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345066

RESUMO

Drug discovery is a laborious process with rising cost per new drug. Peptide macrocycles are promising therapeutics, though conformational flexibility can reduce target affinity and specificity. Recent computational advancements address this problem by enabling rational design of rigidly folded peptide macrocycles. AREAS COVERED: This review summarizes currently approved peptide macrocycle therapeutics and discusses advantages of mesoscale drugs over small molecules or protein therapeutics. It describes the history, rationale, and state of the art of computational tools, such as Rosetta, that allow the design of rigidly structured peptide macrocycles. The emerging pipeline for designing peptide macrocycle drugs is described, including current challenges in designing permeable molecules that can emulate the chameleonic behavior of natural macrocycles. Prospects for reducing computational cost and improving accuracy with emerging computational technologies are also discussed. EXPERT OPINION: To embrace computational design of peptide macrocycle drugs, we must shift current attitudes regarding the role of computation in drug discovery, and move beyond Lipinski's rules. This technology has the potential to shift failures to earlier in silico stages of the drug discovery process, improving success rates in costly clinical trials. Given the available tools, now is the time for drug developers to incorporate peptide macrocycle design into drug discovery pipelines.


Assuntos
Desenho de Fármacos , Compostos Macrocíclicos/farmacologia , Peptídeos/farmacologia , Animais , Ensaios Clínicos como Assunto , Simulação por Computador , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Compostos Macrocíclicos/química , Peptídeos/química
3.
Proteins ; 86(3): 354-369, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29250820

RESUMO

The computational design of novel nested proteins-in which the primary structure of one protein domain (insert) is flanked by the primary structure segments of another (parent)-would enable the generation of multifunctional proteins. Here we present a new algorithm, called Loop-Directed Domain Insertion (LooDo), implemented within the Rosetta software suite, for the purpose of designing nested protein domain combinations connected by flexible linker regions. Conformational space for the insert domain is sampled using large libraries of linker fragments for linker-to-parent domain superimposition followed by insert-to-linker superimposition. The relative positioning of the two domains (treated as rigid bodies) is sampled efficiently by a grid-based, mutual placement compatibility search. The conformations of the loop residues, and the identities of loop as well as interface residues, are simultaneously optimized using a generalized kinematic loop closure algorithm and Rosetta EnzymeDesign, respectively, to minimize interface energy. The algorithm was found to consistently sample near-native conformations and interface sequences for a benchmark set of structurally similar but functionally divergent domain-inserted enzymes from the α/ß hydrolase superfamily, and discriminates well between native and nonnative conformations and sequences, although loop conformations tended to deviate from the native conformations. Furthermore, in cross-domain placement tests, native insert-parent domain combinations were ranked as the best-scoring structures compared to nonnative domain combinations. This algorithm should be broadly applicable to the design of multi-domain protein complexes with any combination of inserted or tandem domain connections.


Assuntos
Algoritmos , Biologia Computacional/métodos , Conformação Proteica , Proteínas/química , Domínio Catalítico , Enzimas/química , Enzimas/metabolismo , Modelos Moleculares , Proteínas/metabolismo , Termodinâmica
4.
Science ; 357(6347): 168-175, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28706065

RESUMO

Proteins fold into unique native structures stabilized by thousands of weak interactions that collectively overcome the entropic cost of folding. Although these forces are "encoded" in the thousands of known protein structures, "decoding" them is challenging because of the complexity of natural proteins that have evolved for function, not stability. We combined computational protein design, next-generation gene synthesis, and a high-throughput protease susceptibility assay to measure folding and stability for more than 15,000 de novo designed miniproteins, 1000 natural proteins, 10,000 point mutants, and 30,000 negative control sequences. This analysis identified more than 2500 stable designed proteins in four basic folds-a number sufficient to enable us to systematically examine how sequence determines folding and stability in uncharted protein space. Iteration between design and experiment increased the design success rate from 6% to 47%, produced stable proteins unlike those found in nature for topologies where design was initially unsuccessful, and revealed subtle contributions to stability as designs became increasingly optimized. Our approach achieves the long-standing goal of a tight feedback cycle between computation and experiment and has the potential to transform computational protein design into a data-driven science.


Assuntos
Dobramento de Proteína , DNA/síntese química , DNA/genética , Análise Mutacional de DNA , Mutação , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Proteínas/química , Proteínas/genética , Proteólise
5.
J Chem Theory Comput ; 13(6): 3031-3048, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28430426

RESUMO

Over the past decade, the Rosetta biomolecular modeling suite has informed diverse biological questions and engineering challenges ranging from interpretation of low-resolution structural data to design of nanomaterials, protein therapeutics, and vaccines. Central to Rosetta's success is the energy function: a model parametrized from small-molecule and X-ray crystal structure data used to approximate the energy associated with each biomolecule conformation. This paper describes the mathematical models and physical concepts that underlie the latest Rosetta energy function, called the Rosetta Energy Function 2015 (REF15). Applying these concepts, we explain how to use Rosetta energies to identify and analyze the features of biomolecular models. Finally, we discuss the latest advances in the energy function that extend its capabilities from soluble proteins to also include membrane proteins, peptides containing noncanonical amino acids, small molecules, carbohydrates, nucleic acids, and other macromolecules.


Assuntos
Substâncias Macromoleculares/química , Simulação de Dinâmica Molecular , Protease de HIV/química , Protease de HIV/genética , Protease de HIV/metabolismo , Substâncias Macromoleculares/metabolismo , Mutação , Conformação Proteica , Eletricidade Estática , Termodinâmica
6.
J Cell Biol ; 171(3): 549-58, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16260500

RESUMO

Actin-based protrusions can form prominent structures on the apical surface of epithelial cells, such as microvilli. Several cytoplasmic factors have been identified that control the dynamics of actin filaments in microvilli. However, it remains unclear whether the plasma membrane participates actively in microvillus formation. In this paper, we analyze the function of Drosophila melanogaster cadherin Cad99C in the microvilli of ovarian follicle cells. Cad99C contributes to eggshell formation and female fertility and is expressed in follicle cells, which produce the eggshells. Cad99C specifically localizes to apical microvilli. Loss of Cad99C function results in shortened and disorganized microvilli, whereas overexpression of Cad99C leads to a dramatic increase of microvillus length. Cad99C that lacks most of the cytoplasmic domain, including potential PDZ domain-binding sites, still promotes excessive microvillus outgrowth, suggesting that the amount of the extracellular domain determines microvillus length. This study reveals Cad99C as a critical regulator of microvillus length, the first example of a transmembrane protein that is involved in this process.


Assuntos
Caderinas/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Precursores de Proteínas/genética , Animais , Proteínas Relacionadas a Caderinas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Microvilosidades/fisiologia , Microvilosidades/ultraestrutura , Oogênese , Folículo Ovariano/fisiologia , Folículo Ovariano/ultraestrutura , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA