Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbes Infect ; 20(4): 261-266, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29287983

RESUMO

Significantly larger numbers of Toxoplasma gondii cysts were detected in the brains of RAG1-/-NOS2-/- than RAG1-/- mice following infection. In contrast, the cyst numbers markedly decreased in a same manner in both strains of mice after receiving CD8+ immune T cells. Thus, NOS2-mediated innate immunity is important for inhibiting formation of cysts in the brain but not required for the T cell-initiated cyst removal, which is associated with phagocyte accumulation. Treatment with chloroquine, an inhibitor of endolysosomal acidification, partially but significantly inhibited the T cell-mediated cyst removal, suggesting that phagosome-lysosome fusion could be involved in the T. gondii cyst elimination.


Assuntos
Encéfalo/parasitologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Inata , Óxido Nítrico Sintase Tipo II/metabolismo , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Encéfalo/patologia , Linfócitos T CD8-Positivos/parasitologia , Linfócitos T CD8-Positivos/transplante , Cloroquina/farmacologia , Feminino , Imunidade Inata/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Óxido Nítrico Sintase Tipo II/genética , Fagossomos/efeitos dos fármacos , Toxoplasma/genética , Toxoplasmose Animal/enzimologia , Toxoplasmose Animal/parasitologia
2.
J Immunol ; 198(11): 4425-4434, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28446567

RESUMO

Toxoplasma gondii, an obligate intracellular protozoan parasite, establishes a chronic infection by forming cysts preferentially in the brain. Up to one third of the human population worldwide is estimated to be chronically infected with this parasite. However, there is currently no drug effective against the cyst form of the parasite. In addition, the protective immunity against the cysts remains largely unknown. We analyzed the molecular mechanisms by which the immune system detects host cells harboring the cysts to eliminate the latent stage of the parasite using mice with the H-2d haplotype, which are genetically resistant to the infection. Our study revealed that CD8+ immune T cells bearing TCR Vß8.1, 8.2 chain have a potent activity to remove T. gondii cysts from the brain. Our studies also uncovered that H-2Ld is the major Ag-presenting molecule to CD8+ T cells for initiating cyst elimination, and that CD8+Vß8.1, 8.2+ immune T cells recognize the N-terminal region (aa 41-152) of dense granule protein 6 (GRA6Nt) of the parasite presented by the H-2Ld molecule. Furthermore, CD8+ immune T cells induced by immunization with recombinant GRA6Nt were eventually capable of removing the cysts from the brain when transferred to infected immunodeficient mice lacking T cells. Thus, GRA6Nt is a novel and potent Ag to activate CD8+ T cells capable of removing T. gondii cysts. These observations offer a basis for immunological intervention to combat chronic infection with T. gondii by targeting the persistent cysts of the parasite.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Antígenos de Protozoários/química , Encéfalo/imunologia , Encéfalo/parasitologia , Camundongos , Proteínas de Protozoários/química , Toxoplasmose Animal/parasitologia , Toxoplasmose Cerebral/imunologia , Toxoplasmose Cerebral/parasitologia
3.
J Immunol ; 195(3): 796-800, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26091720

RESUMO

In vitro studies demonstrated that microglia and astrocytes produce IFN-γ in response to various stimulations, including LPS. However, the physiological role of IFN-γ production by brain-resident cells, including glial cells, in resistance against cerebral infections remains unknown. We analyzed the role of IFN-γ production by brain-resident cells in resistance to reactivation of cerebral infection with Toxoplasma gondii using a murine model. Our study using bone marrow chimeric mice revealed that IFN-γ production by brain-resident cells is essential for upregulating IFN-γ-mediated protective innate immune responses to restrict cerebral T. gondii growth. Studies using a transgenic strain that expresses IFN-γ only in CD11b(+) cells suggested that IFN-γ production by microglia, which is the only CD11b(+) cell population among brain-resident cells, is able to suppress the parasite growth. Furthermore, IFN-γ produced by brain-resident cells is pivotal for recruiting T cells into the brain to control the infection. These results indicate that IFN-γ produced by brain-resident cells is crucial for facilitating both the protective innate and T cell-mediated immune responses to control cerebral infection with T. gondii.


Assuntos
Encéfalo/imunologia , Interferon gama/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Toxoplasmose Cerebral/imunologia , Animais , Astrócitos/imunologia , Astrócitos/parasitologia , Encéfalo/citologia , Encéfalo/parasitologia , Antígeno CD11b/metabolismo , Linhagem Celular , Feminino , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Microglia/imunologia , Microglia/parasitologia , Linfócitos T/imunologia
4.
Infect Immun ; 80(10): 3611-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22851753

RESUMO

We examined whether tachyzoite proliferation in the brains of immunocompetent hosts during the chronic stage of infection with Toxoplasma gondii induces production of IgG antibodies that recognize parasite antigens different from those recognized by the antibodies of infected hosts that do not have tachyzoite growth. For this purpose, two groups of CBA/J mice, which display continuous tachyzoite growth in their brains during the later stage of infection, were infected, and one group received treatment with sulfadiazine to prevent tachyzoite proliferation during the chronic stage of infection. T. gondii antigens recognized by the IgG antibodies from these two groups of mice were compared using immunoblotting following separation of tachyzoite antigens by two-dimensional gel electrophoresis. Several antigens, including the microneme protein MIC2, the cyst matrix protein MAG1, and the dense granule proteins GRA4 and GRA7, were commonly recognized by IgG antibodies from both groups of mice. There were multiple antigens recognized mostly by IgG antibodies of only one group of mice, either with or without cerebral tachyzoite growth. The antigens recognized only by or mostly by the antibodies of mice with cerebral tachyzoite growth include MIC6, the rhoptry protein ROP1, GRA2, one heat shock protein HSP90, one (putative) HSP70, and the myosin heavy chain. These results indicate that levels of IgG antibody to only selected T. gondii antigens increase in association with cerebral tachyzoite proliferation (reactivation of infection) in immunocompetent hosts with chronic infection.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Encéfalo/parasitologia , Imunoglobulina G/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/parasitologia , Animais , Antiprotozoários/farmacologia , Doença Crônica , Feminino , Regulação da Expressão Gênica/fisiologia , Imunoglobulina G/metabolismo , Camundongos , Camundongos Endogâmicos CBA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfadiazina/farmacologia , Toxoplasmose Animal/imunologia
5.
J Med Entomol ; 46(4): 845-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19645287

RESUMO

Previous in vitro studies showed that molecules in an extract of the mite Sarcoptes scabiei variety canis De Geer could modulate the secretion of cytokines from cultured normal human epidermal keratinocytes and dermal fibroblasts in the absence of proinflammatory cytokines in the cell culture media. The purpose of this study was to investigate whether scabies extract could also modulate cytokine and chemokine secretion from epidermal keratinocytes and dermal fibroblasts in the presence of proinflammatory cytokines that are likely present in the scabietic lesion in vivo. In particular, could the downmodulating properties of this ectoparasitic mite on skin cells be maintained in the presence of proinflammatory cytokines? We found that even in the presence of the proinflammatory cytokines interleukin (IL)-1alpha, IL-beta, and a mixture of tumor necrosis factor (TNF)alpha + IL-17, scabies extract still downregulated the levels of IL-8 secretion from keratinocytes and fibroblasts and of granulocyte/macrophage-colony stimulating factor (GM-CSF) secretion from fibroblasts that were induced by stimulation of the cells with proinflammatory cytokines alone. This study also showed that scabies molecules induced secretions of growth-related oncogene alpha (GROalpha), transforming growth factor alpha (TGFalpha), and cutaneous T-cell attracting chemokine (CTACK) from keratinocytes and IL-6 and granulocyte-colony stimulating factor (G-CSF) from fibroblasts. These findings, coupled with the previous findings that molecules in scabies extract could downregulate expression of intracellular adhesion molecule-1 (ICAM-1) and E-selectin by normal dermal microvascular endothelial cells and secretion of IL-1alpha from keratinocytes, suggest that multiple factors from scabies mites play a role in the characteristic delayed inflammatory response to a primary infestation with S. scabiei. These are adaptations that favor invasion of the host by the parasite.


Assuntos
Citocinas/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-8/metabolismo , Queratinócitos/efeitos dos fármacos , Sarcoptes scabiei/química , Extratos de Tecidos/farmacologia , Animais , Células Cultivadas , Quimiocina CCL27/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Humanos , Queratinócitos/imunologia
6.
Genetics ; 174(4): 1973-82, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17028348

RESUMO

Differential gene expression is the major mechanism underlying the development of specific body regions. Here we assessed the role of genes differentially expressed in the Drosophila wing imaginal disc, which gives rise to two distinct adult structures: the body wall and the wing. Reverse genetics was used to test the function of uncharacterized genes first identified in a microarray screen as having high levels of expression in the presumptive wing. Such genes could participate in elaborating the specific morphological characteristics of the wing. The activity of the genes was modulated using misexpression and RNAi-mediated silencing. Misexpression of eight of nine genes tested caused phenotypes. Of 12 genes tested, 10 showed effective silencing with RNAi transgenes, but only 3 of these had resulting phenotypes. The wing phenotypes resulting from RNAi suggest that CG8780 is involved in patterning the veins in the proximal region of the wing blade and that CG17278 and CG30069 are required for adhesion of wing surfaces. Venation and apposition of the wing surfaces are processes specific to wing development providing a correlation between the expression and function of these genes. The results show that a combination of expression profiling and tissue-specific gene silencing has the potential to identify new genes involved in wing development and hence to contribute to our understanding of this process. However, there are both technical and biological limitations to this approach, including the efficacy of RNAi and the role that gene redundancy may play in masking phenotypes.


Assuntos
Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Asas de Animais/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Cruzamentos Genéticos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Fenótipo , Pupa/citologia , Pupa/metabolismo , RNA Interferente Pequeno/farmacologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA