Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33710311

RESUMO

The developmental transition of juvenile salmon from a freshwater resident morph (parr) to a seawater (SW) migratory morph (smolt), known as smoltification, entails a reorganization of gill function to cope with the altered water environment. Recently, we used RNAseq to characterize the breadth of transcriptional change which takes place in the gill in the FW phase of smoltification. This highlighted the importance of extended exposure to short, winter-like photoperiods (SP) followed by a subsequent increase in photoperiod for completion of transcriptional reprogramming in FW and efficient growth following transfer to SW. Here, we extend this analysis to examine the consequences of this photoperiodic history-dependent reprogramming for subsequent gill responses upon exposure to SW. We use RNAseq to analyze gill samples taken from fish raised on the photoperiod regimes we used previously and then challenged by SW exposure for 24 hours. While fish held on constant light (LL) throughout were able to hypo-osmoregulate during a 24 hours SW challenge, the associated gill transcriptional response was highly distinctive from that in fish which had experienced a 7-week period of exposure to SP followed by a return to LL (SPLL) and had consequently acquired the characteristics of fully developed smolts. Fish transferred from LL to SP, and then held on SP for the remainder of the study was unable to hypo-osmoregulate, and the associated gill transcriptional response to SW exposure featured many transcripts apparently regulated by the glucocorticoid stress axis and by the osmo-sensing transcription factor NFAT5. The importance of these pathways for the gill transcriptional response to SW exposure appears to diminish as a consequence of photoperiod mediated induction of the smolt phenotype, presumably reflecting preparatory developmental changes taking place during this process.


Assuntos
Fotoperíodo , Salmo salar , Animais , Água Doce , Brânquias , Salmo salar/genética , Água do Mar
2.
Nat Commun ; 11(1): 5176, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056985

RESUMO

Structural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar L.) sampled from a broad phylogeographic distribution. These SVs recover population genetic structure with high resolution, include an active DNA transposon, widely affect functional features, and overlap more duplicated genes retained from an ancestral salmonid autotetraploidization event than expected. Changes in SV allele frequency between wild and farmed fish indicate polygenic selection on behavioural traits during domestication, targeting brain-expressed synaptic networks linked to neurological disorders in humans. This study offers novel insights into the role of SVs in genome evolution and the genetic architecture of domestication traits, along with resources supporting reliable SV discovery in non-model species.


Assuntos
Animais Selvagens/genética , Domesticação , Genoma , Variação Estrutural do Genoma , Salmo salar/genética , Animais , Elementos de DNA Transponíveis/genética , Pesqueiros , Duplicação Gênica , Frequência do Gene , Variação Genética , Genética Populacional , Técnicas de Genotipagem , Masculino , Anotação de Sequência Molecular , Filogeografia , Sequenciamento Completo do Genoma , Fluxo de Trabalho
4.
PLoS One ; 15(4): e0227496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32267864

RESUMO

Atlantic salmon migrate to sea following completion of a developmental process known as smolting, which establishes a seawater (SW) tolerant phenotype. Smolting is stimulated by exposure to long photoperiod or continuous light (LL) following a period of exposure to short photoperiod (SP), and this leads to major changes in gill ion exchange and osmoregulatory function. Here, we performed an RNAseq experiment to discover novel genes involved in photoperiod-dependent remodeling of the gill. This revealed a novel cohort of genes whose expression rises dramatically in fish transferred to LL following SP exposure, but not in control fish maintained continuously on LL or on SP. A follow-up experiment revealed that the SP-history dependence of LL induction of gene expression varies considerably between genes. Some genes were inducible by LL exposure after only 2 weeks exposure to SP, while others required 8 weeks prior SP exposure for maximum responsiveness to LL. Since subsequent SW growth performance is also markedly improved following 8 weeks SP exposure, these photoperiodic history-dependent genes may be useful predictive markers for full smolt development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fotoperíodo , Salmo salar/fisiologia , Tolerância ao Sal/genética , Água do Mar/efeitos adversos , Migração Animal/fisiologia , Animais , Brânquias/crescimento & desenvolvimento , Estágios do Ciclo de Vida/fisiologia , Noruega , RNA-Seq , Fatores de Tempo
5.
BMC Genomics ; 20(1): 694, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477007

RESUMO

BACKGROUND: Recently developed genome resources in Salmonid fish provides tools for studying the genomics underlying a wide range of properties including life history trait variation in the wild, economically important traits in aquaculture and the evolutionary consequences of whole genome duplications. Although genome assemblies now exist for a number of salmonid species, the lack of regulatory annotations are holding back our mechanistic understanding of how genetic variation in non-coding regulatory regions affect gene expression and the downstream phenotypic effects. RESULTS: We present SalMotifDB, a database and associated web and R interface for the analysis of transcription factors (TFs) and their cis-regulatory binding sites in five salmonid genomes. SalMotifDB integrates TF-binding site information for 3072 non-redundant DNA patterns (motifs) assembled from a large number of metazoan motif databases. Through motif matching and TF prediction, we have used these multi-species databases to construct putative regulatory networks in salmonid species. The utility of SalMotifDB is demonstrated by showing that key lipid metabolism regulators are predicted to regulate a set of genes affected by different lipid and fatty acid content in the feed, and by showing that our motif database explains a significant proportion of gene expression divergence in gene duplicates originating from the salmonid specific whole genome duplication. CONCLUSIONS: SalMotifDB is an effective tool for analyzing transcription factors, their binding sites and the resulting gene regulatory networks in salmonid species, and will be an important tool for gaining a better mechanistic understanding of gene regulation and the associated phenotypes in salmonids. SalMotifDB is available at https://salmobase.org/apps/SalMotifDB .


Assuntos
Bases de Dados Genéticas , Genômica/métodos , Salmonidae/genética , Fatores de Transcrição/metabolismo , Animais , DNA/química , Duplicação Gênica/genética , Redes Reguladoras de Genes , Metabolismo dos Lipídeos/genética , Motivos de Nucleotídeos , Ligação Proteica
6.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30271575

RESUMO

The Norwegian e-Infrastructure for Life Sciences (NeLS) has been developed by ELIXIR Norway to provide its users with a system enabling data storage, sharing, and analysis in a project-oriented fashion. The system is available through easy-to-use web interfaces, including the Galaxy workbench for data analysis and workflow execution. Users confident with a command-line interface and programming may also access it through Secure Shell (SSH) and application programming interfaces (APIs).  NeLS has been in production since 2015, with training and support provided by the help desk of ELIXIR Norway. Through collaboration with NorSeq, the national consortium for high-throughput sequencing, an integrated service is offered so that sequencing data generated in a research project is provided to the involved researchers through NeLS. Sensitive data, such as individual genomic sequencing data, are handled using the TSD (Services for Sensitive Data) platform provided by Sigma2 and the University of Oslo. NeLS integrates national e-infrastructure storage and computing resources, and is also integrated with the SEEK platform in order to store large data files produced by experiments described in SEEK.   In this article, we outline the architecture of NeLS and discuss possible directions for further development.


Assuntos
Disciplinas das Ciências Biológicas , Sistemas de Gerenciamento de Base de Dados , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Disseminação de Informação/métodos , Armazenamento e Recuperação da Informação/métodos , Noruega
7.
Genome Biol Evol ; 10(10): 2785-2800, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239729

RESUMO

Whole-genome duplication (WGD) has been a major evolutionary driver of increased genomic complexity in vertebrates. One such event occurred in the salmonid family ∼80 Ma (Ss4R) giving rise to a plethora of structural and regulatory duplicate-driven divergence, making salmonids an exemplary system to investigate the evolutionary consequences of WGD. Here, we present a draft genome assembly of European grayling (Thymallus thymallus) and use this in a comparative framework to study evolution of gene regulation following WGD. Among the Ss4R duplicates identified in European grayling and Atlantic salmon (Salmo salar), one-third reflect nonneutral tissue expression evolution, with strong purifying selection, maintained over ∼50 Myr. Of these, the majority reflect conserved tissue regulation under strong selective constraints related to brain and neural-related functions, as well as higher-order protein-protein interactions. A small subset of the duplicates have evolved tissue regulatory expression divergence in a common ancestor, which have been subsequently conserved in both lineages, suggestive of adaptive divergence following WGD. These candidates for adaptive tissue expression divergence have elevated rates of protein coding- and promoter-sequence evolution and are enriched for immune- and lipid metabolism ontology terms. Lastly, lineage-specific duplicate divergence points toward underlying differences in adaptive pressures on expression regulation in the nonanadromous grayling versus the anadromous Atlantic salmon. Our findings enhance our understanding of the role of WGD in genome evolution and highlight cases of regulatory divergence of Ss4R duplicates, possibly related to a niche shift in early salmonid evolution.


Assuntos
Regulação da Expressão Gênica , Genoma , Poliploidia , Salmonidae/genética , Seleção Genética , Animais , Evolução Biológica , Canais de Cloreto/genética , Expressão Gênica , Masculino
8.
BMC Genomics ; 18(1): 482, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651544

RESUMO

BACKGROUND: Salmonids are ray-finned fishes which constitute 11 genera and at least 70 species including Atlantic salmon, whitefishes, graylings, rainbow trout, and char. The common ancestor of all Salmonidae experienced a whole genome duplication (WGD) ~80 million years ago, resulting in an autotetraploid genome. Genomic rediplodization is still going on in salmonid species, providing an unique system for studying evolutionary consequences of whole genome duplication. In recent years, high quality genome sequences of Atlantic salmon and Rainbow trout has been established, due to their scientific and commercial values. In this paper we introduce SalmoBase ( http://www.salmobase.org/ ), a tool for making molecular resources for salmonids public available in a framework of visualizations and analytic tools. RESULTS: SalmoBase has been developed as a part of the ELIXIR.NO project. Currently, SalmoBase contains molecular resources for Atlantic salmon and Rainbow trout. Data can be accessed through BLAST, Genome Browser (GBrowse), Genetic Variation Browser (GVBrowse) and Gene Expression Browser (GEBrowse). CONCLUSIONS: To the best of our knowledge, SalmoBase is the first database which integrates salmonids data and allow users to study salmonids in an integrated framework. The database and its tools (e.g., comparative genomics tools, synteny browsers) will be expanded as additional public resources describing other Salmonidae genomes become available.


Assuntos
Bases de Dados Genéticas , Genômica , Salmonidae/genética , Animais , Polimorfismo de Nucleotídeo Único , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA