Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 298(2): R419-26, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19939977

RESUMO

Recent studies in rabbits suggest that insulin resistance and reduced brain insulin contribute to impaired baroreflex control of heart rate (HR) during pregnancy; however, the mechanisms are unknown. The rat model is ideal to investigate these mechanisms because much is known about rat brain baroreflex neurocircuitry and insulin receptor locations. However, it is unclear in rats whether pregnancy impairs the HR baroreflex or whether insulin resistance is involved. Therefore, this study tested the hypothesis that in rats pregnancy decreases HR baroreflex sensitivity (BRS) and that this decrease is related to concurrent decreases in insulin sensitivity (IS). BRS was quantified before, during, and after pregnancy using complementary methods: 1) spontaneous BRS (sBRS) derived from sequence method analysis of telemetric, continuous arterial pressure recordings; and 2) maximal BRS of complete sigmoidal baroreflex relationships. IS was measured (hyperinsulinemic euglycemic clamp) to determine whether BRS and IS change in parallel. sBRS was reduced at midgestation [pregnancy day 10 (P10)], returned to nonpregnant (NP) levels on P18, and fell again at late gestation (P20) (sBRS in ms/mmHg: NP, 1.66 + or - 0.04; P10, 1.17 + or - 0.11; P18, 1.55 + or - 0.12; P20, 1.31 + or - 0.05; n = 5; P < 0.05). Similar triphasic patterns were observed for both maximal BRS [in beats x min(-1) x mmHg(-1): NP, 4.45 + or - 0.52 (n = 10); P11-12, 2.76 + or - 0.11 (n = 7); P17-18, 3.79 + or - 0.14 (n = 5); P19-20, 2.32 + or - 0.40 (n = 8); P < 0.0001] and previous and current measurements of IS (in mg glucose x kg(-1) x min(-1): NP, 32 + or - 2; P19-20, 15 + or - 1; P < 0.0005). Furthermore, during pregnancy, the standard deviation (SD) of MAP increased, and the SD of HR decreased, indirectly suggesting baroreflex impairment. sBRS increased transiently during parturition, and sBRS, maximal BRS, and IS normalized 3-4 days postpartum. In conclusion, pregnancy decreases HR BRS in rats. The parallel temporal changes in BRS and IS suggest a mechanistic link.


Assuntos
Barorreflexo/fisiologia , Frequência Cardíaca/fisiologia , Resistência à Insulina/fisiologia , Insulina/fisiologia , Prenhez/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Técnica Clamp de Glucose , Ocitocina/farmacologia , Período Pós-Parto/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Telemetria
2.
Am J Physiol Regul Integr Comp Physiol ; 296(5): R1419-26, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19261912

RESUMO

Baroreflex sensitivity (BRS) increases in women during the luteal phase of the menstrual cycle, when gonadal hormones are elevated, but whether a similar cycle-dependent variation in BRS occurs in rats is unknown. In addition, whether cyclic BRS changes depend on gonadal steroids has not been previously investigated. To test these hypotheses, BRS was determined in cycling female rats using two approaches: 1) baroreflex control of renal sympathetic nerve activity (RSNA) in anesthetized rats; 2) cardiovagal spontaneous BRS (sBRS) in conscious rats instrumented for continuous telemetric measurements of mean arterial pressure (MAP) and heart rate (HR). MAP, HR, and sBRS were also measured in rats 2-3 and 5-6 wk following ovariectomy (OVX), to eliminate gonadal steroids. In anesthetized rats, RSNA BRS gain was increased (P < 0.01) during proestrus (-4.8+/-0.5% control/mmHg) compared with diestrus/estrus (-2.8 +/- 0.3% control/mmHg). Similarly, a proestrous peak in sBRS was observed in conscious rats (1.66 +/- 0.07 ms/mmHg, proestrus; 1.48 +/- 0.06 ms/mmHg, diestrus/estrus; P < 0.001). OVX eliminated estrous cycle-induced variation in sBRS. In addition, OVX reduced (P < 0.05) diurnal variations in MAP (5.9 +/- 0.3 vs. 3.9 +/- 0.5 mmHg) and HR [54 +/- 4 vs. 39 +/- 3 beats per minute (bpm)], and abolished diurnal variations in sBRS. Finally, while MAP, HR, and sBRS were decreased 2-3 wk following OVX, approximately 3 wk later, MAP and sBRS increased, and HR decreased further. No changes in MAP, HR, or sBRS were seen with time in sham OVX controls. In summary, RSNA and cardiovagal sBRS vary during the rat estrous cycle, and this variation is abolished by OVX. We conclude that sex steroid hormones are required for both cyclic and diurnal changes in BRS in rats.


Assuntos
Barorreflexo/fisiologia , Ciclo Estral/fisiologia , Hormônios Esteroides Gonadais/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Pressão Sanguínea/fisiologia , Estradiol/sangue , Feminino , Frequência Cardíaca/fisiologia , Modelos Animais , Tamanho do Órgão , Ovariectomia , Ovário/anatomia & histologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
3.
Biochem Pharmacol ; 73(11): 1818-28, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17343833

RESUMO

Chronic opioid treatment leads to agonist-specific effects at the mu opioid receptor. The molecular mechanisms resulting from chronic opioid exposure include desensitization, internalization and down-regulation of membrane-bound mu opioid receptors (MOP). The purpose of this study was to compare the cellular regulation of guinea pig, human and rat MOP expressed in Chinese hamster ovary (CHO) cells, following exposure to two clinically important opioids, morphine and methadone. MOP expressing CHO cells were treated in culture with methadone or morphine for up to 48 h. Radioligand diprenorphine and [D-AIa(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO)-stimulated GTP gamma S binding assays were carried out using paired control and opioid-exposed CHO cells. Methadone induced downregulation of the mu opioid receptor, while morphine induced desensitization of the receptor for all three species. Furthermore, morphine predominantly decreased the potency of DAMGO to stimulate GTP gamma S binding, whereas methadone primarily reduced its efficacy. Changes in DAMGO potency and efficacy differed among species and depended on the opioid used to treat the cells. Our results showed similarities between guinea pig and human MOP for morphine-induced desensitization, but identified differences between the two for methadone-induced desensitization. In contrast, human and rat MOP differed in response to morphine treatment, but were not distinct in their response to methadone treatment. The guinea pig is an excellent and established animal model to study opioid effects, but its molecular opioid pharmacology has not been investigated thus far. These results can assist in understanding species differences in the effects of opioid ligands activating the mu opioid receptor.


Assuntos
Analgésicos Opioides/farmacologia , Ligação Competitiva/efeitos dos fármacos , Morfina/farmacologia , Receptores Opioides mu/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Cobaias , Humanos , Ratos , Receptores Opioides mu/efeitos dos fármacos , Especificidade da Espécie , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA