Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Physiol Anim Nutr (Berl) ; 102(1): 317-329, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28294417

RESUMO

We examined if 6 weeks of progressive resistance-loaded voluntary wheel running in rats induced plantaris, soleus, and/or gastrocnemius hypertrophy and/or affected markers of translational efficiency, ribosome biogenesis, and markers of proteolysis. For 6 weeks, 8 male Sprague-Dawley rats (~9-10 weeks of age, ~300-325 g) rats were assigned to the progressive resistance-loaded voluntary wheel running model (EX), and ten rats were not trained (SED). For EX rats, the wheel-loading paradigm was as follows - days 1-7: free-wheel resistance, days 8-15: wheel resistance set to 20%-25% body mass, days 16-24: 40% body mass, days 25-32: 60% body mass, days 33-42: 40% body mass. Following the intervention, muscles were analysed for markers of translational efficiency, ribosome biogenesis, and muscle proteolysis. Raw gastrocnemius mass (+13%, p < .01), relative (body mass-corrected) gastrocnemius mass (+16%, p < .001), raw plantaris mass (+13%, p < .05), and relative plantaris mass (+15%, p < .01) were greater in EX vs. SED rats. In spite of gastrocnemius hypertrophy, EX animals presented a 54% decrease in basal muscle protein synthesis levels (p < .01), a 125% increase in pan 4EBP1 levels (p < .001) and a 31% decrease in pan eIF4E levels (p < .05). However, in relation to SED animals, EX animals presented a 70% increase in gastrocnemius c-Myc protein levels (p < .05). Most markers of translational efficiency and ribosome biogenesis were not altered in the plantaris or soleus muscles of EX vs. SED animals. Gastrocnemius F-box protein 32 and poly-ubiquinated protein levels were approximately 150% and 200% greater in SED vs. EX rats (p < .001). These data suggest that the employed resistance training model increases hind limb muscle hypertrophy, and this may be mainly facilitated through reductions in skeletal muscle proteolysis, rather than alterations in ribosome biogenesis or translational efficiency.


Assuntos
Proteínas Musculares/biossíntese , Músculo Esquelético/crescimento & desenvolvimento , Treinamento Resistido , Ribossomos/metabolismo , Animais , Biomarcadores , Masculino , Atividade Motora/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Sprague-Dawley
2.
Andrologia ; 48(9): 967-977, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26781353

RESUMO

The effects of testosterone (TEST) treatment on markers of skeletal muscle ribosome biogenesis in vitro and in vivo were examined. C2 C12 myotubes were treated with 100 nm TEST for short-term (24-h) and longer-term (96-h) treatments. Moreover, male 10-month-old Fischer 344 rats were housed for 4 weeks, and the following groups were included in this study: (i) Sham-operated (Sham) rats, (ii) orchiectomised rats (ORX) and (iii) ORX+TEST-treated rats (7.0 mg week-1 ). For in vitro data, TEST treatment increased c-Myc mRNA expression by 38% (P = 0.004) after 96 h, but did not affect total RNA, 47S pre-rRNA, Raptor mRNA, Nop56 mRNA, Bop1 mRNA, Ncl mRNA at 24 h or 96 h following the treatment. For in vivo data, ORX decreased levator ani/bulbocavernosus (LABC) myofibril protein versus Sham (P = 0.006), whereas ORX+TEST (P = 0.015) rescued this atrophic effect. ORX also decreased muscle ribosome content (total RNA) compared to Sham (P = 0.046), whereas ORX+TEST tended to rescue this effect (P = 0.057). However, other markers of ribosome biogenesis including c-Myc mRNA, Nop56 mRNA, Bop1 mRNA, Ncl mRNA decreased with ORX independently of TEST treatments (P < 0.05). Finally, lower phospho-(Ser235/236)-to-total rps6 protein and lower rpl5 protein levels existed in ORX+TEST rats versus other treatments, suggesting that chronic TEST treatment may lower translational capacity.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Testosterona/farmacologia , Androgênios/farmacologia , Animais , Biomarcadores/metabolismo , Linhagem Celular , Masculino , Desenvolvimento Muscular/efeitos dos fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Orquiectomia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ratos , Ratos Endogâmicos F344 , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA