Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 7(7)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33568473

RESUMO

Isotopic ratios and, in particular, the water D/H ratio are powerful tracers of the evolution and transport of water on Mars. From measurements performed with ExoMars/NOMAD, we observe marked and rapid variability of the D/H along altitude on Mars and across the whole planet. The observations (from April 2018 to April 2019) sample a broad range of events on Mars, including a global dust storm, the evolution of water released from the southern polar cap during southern summer, the equinox phases, and a short but intense regional dust storm. In three instances, we observe water at very high altitudes (>80 km), the prime region where water is photodissociated and starts its escape to space. Rayleigh distillation appears the be the driving force affecting the D/H in many cases, yet in some instances, the exchange of water reservoirs with distinctive D/H could be responsible.

2.
Nature ; 568(7753): 521-525, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971830

RESUMO

Global dust storms on Mars are rare1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere3, primarily owing to solar heating of the dust3. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars4. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes5,6, as well as a decrease in the water column at low latitudes7,8. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H2O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals3. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere.

4.
Sci Rep ; 9(1): 5370, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926841

RESUMO

The search for life beyond Earth is a key motivator in space exploration. Informational polymers, like DNA and RNA, are key biosignatures for life as we know it. The MinION is a miniature DNA sequencer based on versatile nanopore technology that could be implemented on future planetary missions. A critical unanswered question is whether the MinION and its protein-based nanopores can withstand increased radiation exposure outside Earth's shielding magnetic field. We evaluated the effects of ionizing radiation on the MinION platform - including flow cells, reagents, and hardware - and discovered limited performance loss when exposed to ionizing doses comparable to a mission to Mars. Targets with harsher radiation environments, like Europa, would require improved radiation resistance via additional shielding or design refinements.


Assuntos
Meio Ambiente Extraterreno , Vida , Nanoporos , Tolerância a Radiação , Júpiter , Marte , Análise de Sequência de DNA/instrumentação
5.
Sci Adv ; 3(7): e1700022, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28782019

RESUMO

Recent simulations have indicated that vinyl cyanide is the best candidate molecule for the formation of cell membranes/vesicle structures in Titan's hydrocarbon-rich lakes and seas. Although the existence of vinyl cyanide (C2H3CN) on Titan was previously inferred using Cassini mass spectrometry, a definitive detection has been lacking until now. We report the first spectroscopic detection of vinyl cyanide in Titan's atmosphere, obtained using archival data from the Atacama Large Millimeter/submillimeter Array (ALMA), collected from February to May 2014. We detect the three strongest rotational lines of C2H3CN in the frequency range of 230 to 232 GHz, each with >4σ confidence. Radiative transfer modeling suggests that most of the C2H3CN emission originates at altitudes of ≳200 km, in agreement with recent photochemical models. The vertical column densities implied by our best-fitting models lie in the range of 3.7 × 1013 to 1.4 × 1014 cm-2. The corresponding production rate of vinyl cyanide and its saturation mole fraction imply the availability of sufficient dissolved material to form ~107 cell membranes/cm3 in Titan's sea Ligeia Mare.

6.
Science ; 323(5917): 1041-5, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19150811

RESUMO

Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. On Mars, methane could be a signature of either origin. Using high-dispersion infrared spectrometers at three ground-based telescopes, we measured methane and water vapor simultaneously on Mars over several longitude intervals in northern early and late summer in 2003 and near the vernal equinox in 2006. When present, methane occurred in extended plumes, and the maxima of latitudinal profiles imply that the methane was released from discrete regions. In northern midsummer, the principal plume contained approximately 19,000 metric tons of methane, and the estimated source strength (>/=0.6 kilogram per second) was comparable to that of the massive hydrocarbon seep at Coal Oil Point in Santa Barbara, California.


Assuntos
Marte , Metano , Meio Ambiente Extraterreno , Estações do Ano , Análise Espectral , Vapor
7.
Science ; 310(5746): 270-4, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16166477

RESUMO

We quantified eight parent volatiles (H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4) in the Jupiter-family comet Tempel 1 using high-dispersion infrared spectroscopy in the wavelength range 2.8 to 5.0 micrometers. The abundance ratio for ethane was significantly higher after impact, whereas those for methanol and hydrogen cyanide were unchanged. The abundance ratios in the ejecta are similar to those for most Oort cloud comets, but methanol and acetylene are lower in Tempel 1 by a factor of about 2. These results suggest that the volatile ices in Tempel 1 and in most Oort cloud comets originated in a common region of the protoplanetary disk.


Assuntos
Meteoroides , Júpiter , Compostos Orgânicos/análise , Análise Espectral , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA