Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 6(17): eaba3252, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32426469

RESUMO

A smart contact lens can be used as an excellent interface between the human body and an electronic device for wearable healthcare applications. Despite wide investigations of smart contact lenses for diagnostic applications, there has been no report on electrically controlled drug delivery in combination with real-time biometric analysis. Here, we developed smart contact lenses for both continuous glucose monitoring and treatment of diabetic retinopathy. The smart contact lens device, built on a biocompatible polymer, contains ultrathin, flexible electrical circuits and a microcontroller chip for real-time electrochemical biosensing, on-demand controlled drug delivery, wireless power management, and data communication. In diabetic rabbit models, we could measure tear glucose levels to be validated by the conventional invasive blood glucose tests and trigger drugs to be released from reservoirs for treating diabetic retinopathy. Together, we successfully demonstrated the feasibility of smart contact lenses for noninvasive and continuous diabetic diagnosis and diabetic retinopathy therapy.

2.
ACS Nano ; 9(4): 4120-8, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25826001

RESUMO

Flexible memory is the fundamental component for data processing, storage, and radio frequency communication in flexible electronic systems. Among several emerging memory technologies, phase-change random-access memory (PRAM) is one of the strongest candidate for next-generation nonvolatile memories due to its remarkable merits of large cycling endurance, high speed, and excellent scalability. Although there are a few approaches for flexible phase-change memory (PCM), high reset current is the biggest obstacle for the practical operation of flexible PCM devices. In this paper, we report a flexible PCM realized by incorporating nanoinsulators derived from a Si-containing block copolymer (BCP) to significantly lower the operating current of the flexible memory formed on plastic substrate. The reduction of thermal stress by BCP nanostructures enables the reliable operation of flexible PCM devices integrated with ultrathin flexible diodes during more than 100 switching cycles and 1000 bending cycles.

3.
ACS Nano ; 7(3): 2651-8, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23451771

RESUMO

Phase change memory (PCM), which exploits the phase change behavior of chalcogenide materials, affords tremendous advantages over conventional solid-state memory due to its nonvolatility, high speed, and scalability. However, high power consumption of PCM poses a critical challenge and has been the most significant obstacle to its widespread commercialization. Here, we present a novel approach based on the self-assembly of a block copolymer (BCP) to form a thin nanostructured SiOx layer that locally blocks the contact between a heater electrode and a phase change material. The writing current is decreased 5-fold (corresponding to a power reduction by 1/20) as the occupying area fraction of SiOx nanostructures is increased from a fill factor of 9.1% to 63.6%. Simulation results theoretically explain the current reduction mechanism by localized switching of BCP-blocked phase change materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA