Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39026740

RESUMO

Enhancers are key drivers of gene regulation thought to act via 3D physical interactions with the promoters of their target genes. However, genome-wide depletions of architectural proteins such as cohesin result in only limited changes in gene expression, despite a loss of contact domains and loops. Consequently, the role of cohesin and 3D contacts in enhancer function remains debated. Here, we developed CRISPRi of regulatory elements upon degron operation (CRUDO), a novel approach to measure how changes in contact frequency impact enhancer effects on target genes by perturbing enhancers with CRISPRi and measuring gene expression in the presence or absence of cohesin. We systematically perturbed all 1,039 candidate enhancers near five cohesin-dependent genes and identified 34 enhancer-gene regulatory interactions. Of 26 regulatory interactions with sufficient statistical power to evaluate cohesin dependence, 18 show cohesin-dependent effects. A decrease in enhancer-promoter contact frequency upon removal of cohesin is frequently accompanied by a decrease in the regulatory effect of the enhancer on gene expression, consistent with a contact-based model for enhancer function. However, changes in contact frequency and regulatory effects on gene expression vary as a function of distance, with distal enhancers (e.g., >50Kb) experiencing much larger changes than proximal ones (e.g., <50Kb). Because most enhancers are located close to their target genes, these observations can explain how only a small subset of genes - those with strong distal enhancers - are sensitive to cohesin. Together, our results illuminate how 3D contacts, influenced by both cohesin and genomic distance, tune enhancer effects on gene expression.

2.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132965

RESUMO

The fibrous annulus of the mitral valve plays an important role in valvular function and cardiac physiology, while normal variation in the size of cardiovascular anatomy may share a genetic link with common and rare disease. We derived automated estimates of mitral valve annular diameter in the 4-chamber view from 32,220 MRI images from the UK Biobank at ventricular systole and diastole as the basis for GWAS. Mitral annular dimensions corresponded to previously described anatomical norms, and GWAS inclusive of 4 population strata identified 10 loci, including possibly novel loci (GOSR2, ERBB4, MCTP2, MCPH1) and genes related to cardiac contractility (BAG3, TTN, RBFOX1). ATAC-Seq of primary mitral valve tissue localized multiple variants to regions of open chromatin in biologically relevant cell types and rs17608766 to an algorithmically predicted enhancer element in GOSR2. We observed strong genetic correlation with measures of contractility and mitral valve disease and clinical correlations with heart failure, cerebrovascular disease, and ventricular arrhythmias. Polygenic scoring of mitral valve annular diameter in systole was predictive of risk mitral valve prolapse across 4 cohorts. In summary, genetic and clinical studies of mitral valve annular diameter revealed genetic determinants of mitral valve biology, while highlighting clinical associations. Polygenic determinants of mitral valve annular diameter may represent an independent risk factor for mitral prolapse. Overall, computationally estimated phenotypes derived at scale from medical imaging represent an important substrate for genetic discovery and clinical risk prediction.


Assuntos
DNA/genética , Doenças das Valvas Cardíacas/genética , Valva Mitral/diagnóstico por imagem , Mutação , Contração Miocárdica/fisiologia , Proteínas Qb-SNARE/genética , Análise Mutacional de DNA , Ecocardiografia , Feminino , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valva Mitral/fisiopatologia , Proteínas Qb-SNARE/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA