Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Appl Microbiol Biotechnol ; 106(7): 2503-2516, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35352150

RESUMO

The biocatalytic production of fuels and chemicals from plant biomass represents an attractive alternative to fossil fuel-based refineries. In this context, the mining and characterization of novel biocatalysts can promote disruptive innovation opportunities in the field of lignocellulose conversion and valorization. In the present work, we conducted the biochemical and structural characterization of two novel hydroxycinnamic acid catabolic enzymes, isolated from a lignin-degrading microbial consortium, a feruloyl-CoA synthetase, and a feruloyl-CoA hydratase-lyase, named LM-FCS2 and LM-FCHL2, respectively. Besides establishing the homology model structures for novel FCS and FCHL members with unique characteristics, the enzymes presented interesting biochemical features: LM-FCS2 showed stability in alkaline pHs and was able to convert a wide array of p-hydroxycinnamic acids to their respective CoA-thioesters, including sinapic acid; LM-FCHL2 efficiently converted feruloyl-CoA and p-coumaroyl-CoA into vanillin and 4-hydroxybenzaldehyde, respectively, and could produce vanillin directly from ferulic acid. The coupled reaction of LM-FCS2 and LM-FCHL2 produced vanillin, not only from commercial ferulic acid but also from a crude lignocellulosic hydrolysate. Collectively, this work illuminates the structure and function of two critical enzymes involved in converting ferulic acid into high-value molecules, thus providing valuable concepts applied to the development of plant biomass biorefineries. KEY POINTS: • Comprehensive characterization of feruloyl-CoA synthetase from metagenomic origin. • Novel low-resolution structures of hydroxycinnamate catabolic enzymes. • Production of vanillin via enzymatic reaction using lignocellulosic hydrolysates.


Assuntos
Lignina , Metagenoma , Escherichia coli/genética , Hiperlipidemia Familiar Combinada , Lignina/metabolismo , Solo
2.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140437, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325255

RESUMO

The endo-ß-1,4-mannanase from the hyperthermostable bacterium Thermotoga petrophila (TpMan) is an enzyme that catalyzes the hydrolysis of mannan and heteromannan polysaccharides. Of the three domains that comprise TpMan, the N-terminal GH5 catalytic domain and the C-terminal carbohydrate-binding domain are connected through a central ancillary domain of unknown structure and function. In this study, we report the partial crystal structure of the TpMan at 1.45 Å resolution, so far, the first modular hyperthermostable endo-ß-1,4-mannanase structure determined. The structure exhibits two domains, a (ß/α)8-barrel GH5 catalytic domain connected via a linker to the central domain with an immunoglobulin-like ß-sandwich fold formed of seven ß-strands. Functional analysis showed that whereas the immunoglobulin-like domain does not have the carbohydrate-binding function, it stacks on the GH5 catalytic domain acting as a thermostabilizing domain and allowing operation at hyperthermophilic conditions. The carbohydrate-binding domain is absent in the crystal structure most likely due to its high flexibility around the immunoglobulin-like domain which may act also as a pivot. These results represent new structural and functional information useful on biotechnological applications for biofuel and food industries.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Domínios de Imunoglobulina , Mananas/química , Manosidases/química , Bactérias/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Mananas/metabolismo , Manosidases/genética , Manosidases/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Thermotoga
3.
FEBS J ; 281(18): 4165-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975648

RESUMO

UNLABELLED: Hemicellulose is an important part of the plant cell wall biomass, and is relevant to cellulosic ethanol technologies. ß-Mannosidases are enzymes capable of cleaving nonreducing residues of ß-d-mannose from ß-d-mannosides and hemicellulose mannose-containing polysaccharides, such as mannans and galactomannans. ß-Mannosidases are distributed between glycoside hydrolase (GH) families 1, 2, and 5, and only a handful of the enzymes have been structurally characterized to date. The only published X-ray structure of a GH family 2 mannosidase is that of the bacterial Bacteroides thetaiotaomicron enzyme. No structures of eukaryotic mannosidases of this family are currently available. To fill this gap, we set out to solve the structure of Trichoderma harzianum GH family 2 ß-mannosidase and to refine it to 1.9-Å resolution. Structural comparisons of the T. harzianum GH2 ß-mannosidase highlight similarities in its structural architecture with other members of GH family 2, reveal the molecular mechanism of ß-mannoside binding and recognition, and shed light on its putative galactomannan-binding site. DATABASE: Coordinates and observed structure factor amplitudes have been deposited with the Protein Data Bank (4CVU and 4UOJ). The T. harzianum ß-mannosidase 2A nucleotide sequence has GenBank accession number BankIt1712036 GeneMark.hmm KJ624918.


Assuntos
Proteínas Fúngicas/química , Trichoderma/enzimologia , beta-Manosidase/química , Proteínas de Bactérias/química , Domínio Catalítico , Cristalografia por Raios X , Proteínas Fúngicas/fisiologia , Galactose/análogos & derivados , Glicosilação , Mananas/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , beta-Manosidase/fisiologia
4.
FEBS J ; 280(1): 56-69, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23114223

RESUMO

Aiming to contribute toward the characterization of new, biotechnologically relevant cellulolytic enzymes, we report here the first crystal structure of the catalytic core domain of Cel7A (cellobiohydrolase I) from the filamentous fungus Trichoderma harzianum IOC 3844. Our structural studies and molecular dynamics simulations show that the flexibility of Tyr260, in comparison with Tyr247 from the homologous Trichoderma reesei Cel7A, is enhanced as a result of the short side-chains of adjacent Val216 and Ala384 residues and creates an additional gap at the side face of the catalytic tunnel. T. harzianum cellobiohydrolase I also has a shortened loop at the entrance of the cellulose-binding tunnel, which has been described to interact with the substrate in T. reesei Cel7A. These structural features might explain why T. harzianum Cel7A displays higher k(cat) and K(m) values, and lower product inhibition on both glucoside and lactoside substrates, compared with T. reesei Cel7A.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Simulação de Dinâmica Molecular , Trichoderma/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Ligação de Hidrogênio , Cinética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
5.
Biochem Biophys Res Commun ; 323(3): 987-95, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15381097

RESUMO

Xylella fastidiosa was the first plant pathogen to have its complete genome sequence elucidated. Routine database analyses suggested that two enzymes essential for fatty acid synthesis were missing, one of these is the holo-acyl-carrier-protein synthase. However, here we demonstrate, using (13)C NMR spectroscopy, that X. fastidiosa is indeed able to synthesize fatty acids from acetate via an apparently conventional metabolic pathway. We further identify a gene product HetI, an alternative phosphopantetheinyl transferase, which we propose to fill the missing link. Homology modeling of HetI shows conservation of the Coenzyme A binding site suggesting it to be an active enzyme and reveals several interesting structural features when compared with the surfactin synthase-activating enzyme, on which the model was built. These include a simplified topology due to N- and C-terminal deletions and the observation of a novel serine ladder.


Assuntos
Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica/métodos , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Xylella/metabolismo , Acetatos/metabolismo , Sequência de Aminoácidos , Isótopos de Carbono , Simulação por Computador , Genoma Bacteriano , Dados de Sequência Molecular , Conformação Proteica , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Estatística como Assunto , Transferases (Outros Grupos de Fosfato Substituídos)/genética
6.
Biochem Biophys Res Commun ; 315(2): 485-92, 2004 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-14766234

RESUMO

The GumH enzyme from Xylella fastidiosa catalyzes the transfer reaction of a mannose from GDP-mannose to the carrier lipid cellobiose-pyrophosphate-polyprenol (Glc(2)-PP-Lip), an intermediary in the reaction for the synthesis of the exopolysaccharide (EPS) fastidian gum. The gumH gene was subcloned in the pMal-c2x vector, allowing the expression of the GumH-MBP fusion protein. Various attempts were made to obtain protein with the necessary degree of purity for crystallographic studies but the yield was very low. The gumH gene was then subcloned in the pET28a vector allowing the expression of the GumH enzyme in fusion with a histidine-rich peptide. The protein was purified and characterized. The three-dimensional structure of the X. fastidiosa GumH enzyme was modeled by threading studies. The model consists of N- and C-terminal domains similar in size and topology and separated by a deep cleft, which includes the EX(7)E motif that can be involved in the catalysis of GumH.


Assuntos
Proteínas de Bactérias/química , Manosiltransferases/química , Proteínas Recombinantes/química , Xylella/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Catálise , Dicroísmo Circular , Clonagem Molecular , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Vetores Genéticos , Histidina/química , Metabolismo dos Lipídeos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA