Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 128(4): 1789-99, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20968352

RESUMO

This paper describes an analytical calculation of break-out noise from a rectangular plenum with four flexible walls by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The breakout noise from rectangular plenums is important and the coupling between acoustic waves within the plenum and structural waves in the flexible plenum walls plays a critical role in prediction of the transverse transmission loss. The first step in breakout noise prediction is to calculate the inside plenum pressure field and the normal flexible plenum wall vibration by using an impedance-mobility approach, which results in a compact matrix formulation. In the impedance-mobility compact matrix (IMCM) approach, it is presumed that the coupled response can be described in terms of finite sets of the uncoupled acoustic subsystem and the structural subsystem. The flexible walls of the plenum are modeled as an unfolded plate to calculate natural frequencies and mode shapes of the uncoupled structural subsystem. The second step is to calculate the radiated sound power from the flexible walls using Kirchhoff-Helmholtz (KH) integral formulation. Analytical results are validated with finite element and boundary element (FEM-BEM) numerical models.


Assuntos
Acústica/instrumentação , Arquitetura de Instituições de Saúde , Modelos Teóricos , Ruído , Simulação por Computador , Elasticidade , Desenho de Equipamento , Análise de Elementos Finitos , Análise Numérica Assistida por Computador , Pressão , Vibração
2.
J Acoust Soc Am ; 124(5): 2952-62, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19045783

RESUMO

This paper describes an analytical calculation of breakout noise by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The breakout noise phenomena from cavities are important at low frequencies, and the coupling between acoustic waves and structural waves plays a critical role in prediction of the transverse transmission loss. The first step in the breakout noise prediction is to calculate the inside cavity pressure field and the normal cavity wall vibration by using an impedance-mobility approach, which results in a compact matrix formulation. The second step is to calculate the radiated sound power from an unbaffled plate formulation that poses formidable challenges on computational time. The proposed formulation helps in reducing the computational time substantially by converting quadruple integrals into single integrals using an appropriate coordinate transformation technique. Analytical results are validated with the finite element/boundary element numerical models.


Assuntos
Acústica , Materiais de Construção , Ruído , Modelos Biológicos , Pressão , Vibração
3.
J Acoust Soc Am ; 118(1): 60-71, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16119330

RESUMO

Wave coupling exists in the wave propagation in multiple interacting ducts within a waveguide. One may use the segmentation approach, decoupling approach, eigenvalue approach, or the matrizant approach to derive the overall transfer matrix for the muffler section with interacting ducts, and then apply the terminal boundary conditions to obtain a two-by-two transfer matrix. In such instances, a boundary condition applied to a vector is given as a linear combination of its components. Spatial dimensions along with parameters like impedance of the perforated interface may yield numerical instability during computation leading to inaccurate prediction of the acoustic performance of mufflers. Here, an inherently stable boundary-condition-transfer approach is discussed to analyze the plane wave propagation in suchlike mufflers and applied to waveguides of variable cross-sectional area. The concept of pseudo boundary conditions applied to the state vector at an intermediate point is outlined. The method is checked for self-consistency and shown to be stable even for extreme geometries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA