Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Neuro Oncol ; 26(2): 348-361, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37715730

RESUMO

BACKGROUND: Recurrent brain tumors are the leading cause of cancer death in children. Indoleamine 2,3-dioxygenase (IDO) is a targetable metabolic checkpoint that, in preclinical models, inhibits anti-tumor immunity following chemotherapy. METHODS: We conducted a phase I trial (NCT02502708) of the oral IDO-pathway inhibitor indoximod in children with recurrent brain tumors or newly diagnosed diffuse intrinsic pontine glioma (DIPG). Separate dose-finding arms were performed for indoximod in combination with oral temozolomide (200 mg/m2/day x 5 days in 28-day cycles), or with palliative conformal radiation. Blood samples were collected at baseline and monthly for single-cell RNA-sequencing with paired single-cell T cell receptor sequencing. RESULTS: Eighty-one patients were treated with indoximod-based combination therapy. Median follow-up was 52 months (range 39-77 months). Maximum tolerated dose was not reached, and the pediatric dose of indoximod was determined as 19.2 mg/kg/dose, twice daily. Median overall survival was 13.3 months (n = 68, range 0.2-62.7) for all patients with recurrent disease and 14.4 months (n = 13, range 4.7-29.7) for DIPG. The subset of n = 26 patients who showed evidence of objective response (even a partial or mixed response) had over 3-fold longer median OS (25.2 months, range 5.4-61.9, p = 0.006) compared to n = 37 nonresponders (7.3 months, range 0.2-62.7). Four patients remain free of active disease longer than 36 months. Single-cell sequencing confirmed emergence of new circulating CD8 T cell clonotypes with late effector phenotype. CONCLUSIONS: Indoximod was well tolerated and could be safely combined with chemotherapy and radiation. Encouraging preliminary evidence of efficacy supports advancing to Phase II/III trials for pediatric brain tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias do Tronco Encefálico , Humanos , Criança , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Temozolomida , Triptofano , Fatores Imunológicos , Imunoterapia , Neoplasias do Tronco Encefálico/patologia
2.
Front Immunol ; 14: 1271800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090590

RESUMO

Introduction: Current multistep methods utilized for preparing and cryopreserving single-cell suspensions from blood samples for single-cell RNA sequencing (scRNA-seq) are time-consuming, requiring trained personnel and special equipment, so limiting their clinical adoption. We developed a method, Simple prEservatioN of Single cElls (SENSE), for single-step cryopreservation of whole blood (WB) along with granulocyte depletion during single-cell assay, to generate high quality single-cell profiles (SCP). Methods: WB was cryopreserved using the SENSE method and peripheral blood mononuclear cells (PBMCs) were isolated and cryopreserved using the traditional density-gradient method (PBMC method) from the same blood sample (n=6). The SCPs obtained from both methods were processed using a similar pipeline and quality control parameters. Further, entropy calculation, differential gene expression, and cellular communication analysis were performed to compare cell types and subtypes from both methods. Results: Highly viable (86.3 ± 1.51%) single-cell suspensions (22,353 cells) were obtained from the six WB samples cryopreserved using the SENSE method. In-depth characterization of the scRNA-seq datasets from the samples processed with the SENSE method yielded high-quality profiles of lymphoid and myeloid cell types which were in concordance with the profiles obtained with classical multistep PBMC method processed samples. Additionally, the SENSE method cryopreserved samples exhibited significantly higher T-cell enrichment, enabling deeper characterization of T-cell subtypes. Overall, the SENSE and PBMC methods processed samples exhibited transcriptional, and cellular communication network level similarities across cell types with no batch effect except in myeloid lineage cells. Discussion: Comparative analysis of scRNA-seq datasets obtained with the two cryopreservation methods i.e., SENSE and PBMC methods, yielded similar cellular and molecular profiles, confirming the suitability of the former method's incorporation in clinics/labs for cryopreserving and obtaining high-quality single-cells for conducting critical translational research.


Assuntos
Criopreservação , Leucócitos Mononucleares , Criopreservação/métodos , Controle de Qualidade
3.
Cancer Cell ; 41(3): 620-636.e9, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917954

RESUMO

The cellular and molecular mechanisms underlying tumor cell PD-L1 (tPD-L1) function in tumor immune evasion are incompletely understood. We report here that tPD-L1 does not suppress cytotoxic T lymphocyte (CTL) activity in co-cultures of tumor cells and tumor-specific CTLs and exhibits no effect on primary tumor growth. However, deleting tPD-L1 decreases lung metastasis in a CTL-dependent manner in tumor-bearing mice. Depletion of myeloid cells or knocking out PD-1 in myeloid cells (mPD-1) impairs tPD-L1 promotion of tumor lung metastasis in mice. Single-cell RNA sequencing (scRNA-seq) reveals that tPD-L1 engages mPD-1 to activate SHP2 to antagonize the type I interferon (IFN-I) and STAT1 pathway to repress Cxcl9 and impair CTL recruitment to lung metastases. Human cancer patient response to PD-1 blockade immunotherapy correlates with IFN-I response in myeloid cells. Our findings determine that tPD-L1 engages mPD-1 to activate SHP2 to suppress the IFN-I-STAT1-CXCL9 pathway to impair CTL tumor recruitment in lung metastasis.


Assuntos
Interferon Tipo I , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Linfócitos T Citotóxicos , Receptor de Morte Celular Programada 1 , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética
4.
Cancer Cell ; 40(10): 1145-1160.e9, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36150390

RESUMO

Activation of unfolded protein responses (UPRs) in cancer cells undergoing endoplasmic reticulum (ER) stress promotes survival. However, how UPR in tumor cells impacts anti-tumor immune responses remains poorly described. Here, we investigate the role of the UPR mediator pancreatic ER kinase (PKR)-like ER kinase (PERK) in cancer cells in the modulation of anti-tumor immunity. Deletion of PERK in cancer cells or pharmacological inhibition of PERK in melanoma-bearing mice incites robust activation of anti-tumor T cell immunity and attenuates tumor growth. PERK elimination in ER-stressed malignant cells triggers SEC61ß-induced paraptosis, thereby promoting immunogenic cell death (ICD) and systemic anti-tumor responses. ICD induction in PERK-ablated tumors stimulates type I interferon production in dendritic cells (DCs), which primes CCR2-dependent tumor trafficking of common-monocytic precursors and their intra-tumor commitment into monocytic-lineage inflammatory Ly6C+CD103+ DCs. These findings identify how tumor cell-derived PERK promotes immune evasion and highlight the potential of PERK-targeting therapies in cancer immunotherapy.


Assuntos
Interferon Tipo I , Neoplasias , Animais , Estresse do Retículo Endoplasmático , Interferon Tipo I/metabolismo , Camundongos , Transdução de Sinais , Linfócitos T/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
5.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35882449

RESUMO

BACKGROUND: Adoptive cell therapy (ACT) using genetically modified T cells has evolved into a promising treatment option for patients with cancer. However, even for the best-studied and clinically validated CD19-targeted chimeric antigen receptor (CAR) T-cell therapy, many patients face the challenge of lack of response or occurrence of relapse. There is increasing need to improve the efficacy of ACT so that durable, curative outcomes can be achieved in a broad patient population. METHODS: Here, we investigated the impact of indomethacin (indo), a non-steroidal anti-inflammatory drug (NSAID), on the efficacy of ACT in multiple preclinical models. Mice with established B-cell lymphoma received various combinations of preconditioning chemotherapy, infusion of suboptimal dose of tumor-reactive T cells, and indo administration. Donor T cells used in the ACT models included CD4+ T cells expressing a tumor-specific T cell receptor (TCR) and T cells engineered to express CD19CAR. Mice were monitored for tumor growth and survival. The effects of indo on donor T cell phenotype and function were evaluated. The molecular mechanisms by which indo may influence the outcome of ACT were investigated. RESULTS: ACT coupled with indo administration led to improved tumor growth control and prolonged mouse survival. Indo did not affect the activation status and tumor infiltration of the donor T cells. Moreover, the beneficial effect of indo in ACT did not rely on its inhibitory effect on the immunosuppressive cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) axis. Instead, indo-induced oxidative stress boosted the expression of death receptor 5 (DR5) in tumor cells, rendering them susceptible to donor T cells expressing TNF-related apoptosis-inducing ligand (TRAIL). Furthermore, the ACT-potentiating effect of indo was diminished against DR5-deficient tumors, but was amplified by donor T cells engineered to overexpress TRAIL. CONCLUSION: Our results demonstrate that the pro-oxidative property of indo can be exploited to enhance death receptor signaling in cancer cells, providing rationale for combining indo with genetically modified T cells to intensify tumor cell killing through the TRAIL-DR5 axis. These findings implicate indo administration, and potentially similar use of other NSAIDs, as a readily applicable and cost-effective approach to augment the efficacy of ACT.


Assuntos
Indometacina , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Indometacina/farmacologia , Camundongos , Recidiva Local de Neoplasia , Estresse Oxidativo , Ligante Indutor de Apoptose Relacionado a TNF
6.
Cell Mol Immunol ; 19(7): 820-833, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35581350

RESUMO

Regulatory T cells (Tregs) promote immune homeostasis by maintaining self-tolerance and regulating inflammatory responses. Under certain inflammatory conditions, Tregs can lose their lineage stability and function. Previous studies have reported that ex vivo exposure to retinoic acid (RA) enhances Treg function and stability. However, it is unknown how RA receptor signaling in Tregs influences these processes in vivo. Herein, we employed mouse models in which RA signaling is silenced by the expression of the dominant negative receptor (DN) RARα in all T cells. Despite the fact that DNRARα conventional T cells are hypofunctional, Tregs had increased CD25 expression, STAT5 pathway activation, mTORC1 signaling and supersuppressor function. Furthermore, DNRARα Tregs had increased inhibitory molecule expression, amino acid transporter expression, and metabolic fitness and decreased antiapoptotic proteins. Supersuppressor function was observed when wild-type mice were treated with a pharmacologic pan-RAR antagonist. Unexpectedly, Treg-specific expression of DNRARα resulted in distinct phenotypes, such that a single allele of DNRARα in Tregs heightened their suppressive function, and biallelic expression led to loss of suppression and autoimmunity. The loss of Treg function was not cell intrinsic, as Tregs that developed in a noninflammatory milieu in chimeric mice reconstituted with DNRARα and wild-type bone marrow maintained the enhanced suppressive capacity. Fate mapping suggested that maintaining Treg stability in an inflammatory milieu requires RA signaling. Our findings indicate that RA signaling acts as a rheostat to balance Treg function in inflammatory and noninflammatory conditions in a dose-dependent manner.


Assuntos
Linfócitos T Reguladores , Tretinoína , Animais , Autoimunidade , Tolerância Imunológica , Camundongos , Transdução de Sinais , Tretinoína/farmacologia
7.
Blood ; 139(19): 2983-2997, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35226736

RESUMO

Despite advances in the field, chronic graft-versus-host-disease (cGVHD) remains a leading cause of morbidity and mortality following allogenic hematopoietic stem cell transplant. Because treatment options remain limited, we tested efficacy of anticancer, chromatin-modifying enzyme inhibitors in a clinically relevant murine model of cGVHD with bronchiolitis obliterans (BO). We observed that the novel enhancer of zeste homolog 2 (EZH2) inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 each improved pulmonary function; impaired the germinal center (GC) reaction, a prerequisite in cGVHD/BO pathogenesis; and JQ5 reduced EZH2-mediated H3K27me3 in donor T cells. Using conditional EZH2 knockout donor cells, we demonstrated that EZH2 is obligatory for the initiation of cGVHD/BO. In a sclerodermatous cGVHD model, JQ5 reduced the severity of cutaneous lesions. To determine how the 2 drugs could lead to the same physiological improvements while targeting unique epigenetic processes, we analyzed the transcriptomes of splenic GCB cells (GCBs) from transplanted mice treated with either drug. Multiple inflammatory and signaling pathways enriched in cGVHD/BO GCBs were reduced by each drug. GCBs from JQ5- but not JQ1-treated mice were enriched for proproliferative pathways also seen in GCBs from bone marrow-only transplanted mice, likely reflecting their underlying biology in the unperturbed state. In conjunction with in vivo data, these insights led us to conclude that epigenetic targeting of the GC is a viable clinical approach for the treatment of cGVHD, and that the EZH2 inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 demonstrated clinical potential for EZH2i and BETi in patients with cGVHD/BO.


Assuntos
Bronquiolite Obliterante , Proteína Potenciadora do Homólogo 2 de Zeste , Centro Germinativo , Doença Enxerto-Hospedeiro , Proteínas , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Bronquiolite Obliterante/genética , Bronquiolite Obliterante/metabolismo , Bronquiolite Obliterante/patologia , Doença Crônica , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/farmacologia , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/patologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Humanos , Camundongos , Proteínas/metabolismo , Transcriptoma
8.
Immunity ; 54(10): 2354-2371.e8, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34614413

RESUMO

Monocytic-lineage inflammatory Ly6c+CD103+ dendritic cells (DCs) promote antitumor immunity, but these DCs are infrequent in tumors, even upon chemotherapy. Here, we examined how targeting pathways that inhibit the differentiation of inflammatory myeloid cells affect antitumor immunity. Pharmacologic inhibition of Bruton's tyrosine kinase (BTK) and the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) or deletion of Btk or Ido1 allowed robust differentiation of inflammatory Ly6c+CD103+ DCs during chemotherapy, promoting antitumor T cell responses and inhibiting tumor growth. Immature Ly6c+c-kit+ precursor cells had epigenetic profiles similar to conventional DC precursors; deletion of Btk or Ido1 promoted differentiation of these cells. Mechanistically, a BTK-IDO axis inhibited a tryptophan-sensitive differentiation pathway driven by GATOR2 and mTORC1, and disruption of the GATOR2 in monocyte-lineage precursors prevented differentiation into inflammatory DCs in vivo. IDO-expressing DCs and monocytic cells were present across a range of human tumors. Thus, a BTK-IDO axis represses differentiation of inflammatory DCs during chemotherapy, with implications for targeted therapies.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Tirosina Quinase da Agamaglobulinemia/imunologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo
9.
Blood ; 137(8): 1090-1103, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32976550

RESUMO

The nuclear receptor (NR) subclass, retinoid X receptors (RXRs), exert immunomodulatory functions that control inflammation and metabolism via homodimers and heterodimers, with several other NRs, including retinoic acid receptors. IRX4204 is a novel, highly specific RXR agonist in clinical trials that potently and selectively activates RXR homodimers, but not heterodimers. In this study, in vivo IRX4204 compared favorably with FK506 in abrogating acute graft-versus-host disease (GVHD), which was associated with inhibiting allogeneic donor T-cell proliferation, reducing T-helper 1 differentiation, and promoting regulatory T-cell (Treg) generation. Recipient IRX4204 treatment reduced intestinal injury and decreased IFN-γ and TNF-α serum levels. Transcriptional analysis of donor T cells isolated from intestines of GVHD mice treated with IRX4204 revealed significant decreases in transcripts regulating proinflammatory pathways. In vitro, inducible Treg differentiation from naive CD4+ T cells was enhanced by IRX4204. In vivo, IRX4204 increased the conversion of donor Foxp3- T cells into peripheral Foxp3+ Tregs in GVHD mice. Using Foxp3 lineage-tracer mice in which both the origin and current FoxP3 expression of Tregs can be tracked, we demonstrated that IRX4204 supports Treg stability. Despite favoring Tregs and reducing Th1 differentiation, IRX4204-treated recipients maintained graft-versus-leukemia responses against both leukemia and lymphoma cells. Notably, IRX4204 reduced in vitro human T-cell proliferation and enhanced Treg generation in mixed lymphocyte reaction cultures. Collectively, these beneficial effects indicate that targeting RXRs with IRX4204 could be a novel approach to preventing acute GVHD in the clinic.


Assuntos
Transplante de Medula Óssea , Ciclopropanos/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Efeito Enxerto vs Leucemia/efeitos dos fármacos , Receptores X de Retinoides/agonistas , Animais , Transplante de Medula Óssea/efeitos adversos , Reposicionamento de Medicamentos , Feminino , Doença Enxerto-Hospedeiro/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/patologia
10.
Sci Immunol ; 5(52)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127608

RESUMO

The presence of polyfunctional CD4+ T cells is often associated with favorable antitumor immunity. We report here that persistent activation of signal transducer and activator of transcription 5 (STAT5) in tumor-specific CD4+ T cells drives the development of polyfunctional T cells. We showed that ectopic expression of a constitutively active form of murine STAT5A (CASTAT5) enabled tumor-specific CD4+ T cells to undergo robust expansion, infiltrate tumors vigorously, and elicit antitumor CD8+ T cell responses in a CD4+ T cell adoptive transfer model system. Integrated epigenomic and transcriptomic analysis revealed that CASTAT5 induced genome-wide chromatin remodeling in CD4+ T cells and established a distinct epigenetic and transcriptional landscape. Single-cell RNA sequencing analysis further identified a subset of CASTAT5-transduced CD4+ T cells with a molecular signature indicative of progenitor polyfunctional T cells. The therapeutic significance of CASTAT5 came from our finding that adoptive transfer of T cells engineered to coexpress CD19-targeting chimeric antigen receptor (CAR) and CASTAT5 gave rise to polyfunctional CD4+ CAR T cells in a mouse B cell lymphoma model. The optimal therapeutic outcome was obtained when both CD4+ and CD8+ CAR T cells were transduced with CASTAT5, indicating that CASTAT5 facilitates productive CD4 help to CD8+ T cells. Furthermore, we provide evidence that CASTAT5 is functional in primary human CD4+ T cells, underscoring its potential clinical relevance. Our results implicate STAT5 as a valid candidate for T cell engineering to generate polyfunctional, exhaustion-resistant, and tumor-tropic antitumor CD4+ T cells to potentiate adoptive T cell therapy for cancer.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Epigênese Genética/imunologia , Imunoterapia Adotiva/métodos , Linfoma/terapia , Fator de Transcrição STAT5/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Linfoma/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , RNA-Seq , Receptores de Antígenos Quiméricos/imunologia , Fator de Transcrição STAT5/genética , Análise de Célula Única , Transdução Genética
11.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33051343

RESUMO

BACKGROUND: NF-κB is a key link between inflammation and cancer. Previous studies of NF-κB have largely focused on tumor cells, and the intrinsic function of NF-κB in T cells in tumor development and response to immunotherapy is largely unknown. We aimed at testing the hypothesis that NF-κB1 (p50) activation in T cells underlies human colon cancer immune escape and human cancer non-response to anti-PD-1 immunotherapy. METHODS: We screened NF-κB activation in human colon carcinoma and used mouse models to determine p50 function in tumor cells and immune cells. RNA-Seq was used to identify p50 target genes. p50 binding to target gene promoters were determined by electrophoresis mobility shift assay and chromatin immunoprecipitation. A p50 activation score was generated from gene expression profiling and used to link p50 activation to T-cell activation and function pre-nivolumab and post-nivolumab immunotherapy in human patients with cancer. RESULTS: p50 is the dominant form of NF-κB that is highly activated in immune cells in the human colorectal carcinoma microenvironment and neighboring non-neoplastic colon epithelial cells. Tumor cell intrinsic p50 signaling and T-cell intrinsic p50 signaling exert opposing functions in tumor growth control in vivo. Deleting Nfkb1 in tumor cells increased whereas in T cells decreased tumor growth in preclinical mouse models. Gene expression profiling identified Gzmb as a p50 target in T cells. p50 binds directly to a previously uncharacterized κB sequence at the Gzmb promoter in T cells, resulting in repression of Gzmb expression in tumor-infiltrating cytotoxic T lymphocytes (CTLs) to induce a dysfunctional CTL phenotype to promote tumor immune escape. p50 activation is inversely correlated with both GZMB expression and T-cell tumor infiltration in human colorectal carcinoma. Furthermore, nivolumab immunotherapy decreased p50 activation and increased GZMB expression in human patients with melanoma. CONCLUSIONS: Inflammation activates p50 that binds to the Gzmb promoter to repress granzyme B expression in T cells, resulting in CTL dysfunction to confer tumor immune escape and decreased response to anti-PD-1 immunotherapy.


Assuntos
Imunoterapia/métodos , Linfócitos T Citotóxicos/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Evasão Tumoral
12.
Clin Cancer Res ; 26(19): 5232-5245, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32546647

RESUMO

PURPOSE: Wild-type isocitrate dehydrogenase-expressing glioblastoma (GBM) is the most common and aggressive primary brain tumor with a median age at diagnosis of ≥65 years. It accounts for approximately 90% of all GBMs and has a median overall survival (OS) of <15 months. Although immune checkpoint blockade (ICB) therapy has achieved remarkable survival benefits in a variety of aggressive malignancies, similar success has yet to be achieved for GBM among phase III clinical trials to date. Our study aimed to understand the relationship between subject age and immunotherapeutic efficacy as it relates to survival from glioma. EXPERIMENTAL DESIGN: (i) Clinical data: GBM patient datasets from The Cancer Genome Atlas, Northwestern Medicine Enterprise Data Warehouse, and clinical studies evaluating ICB were stratified by age and compared for OS. (ii) Animal models: young, middle-aged, and older adult wild-type and indoleamine 2,3 dioxygenase (IDO)-knockout syngeneic mice were intracranially engrafted with CT-2A or GL261 glioma cell lines and treated with or without CTLA-4/PD-L1 mAbs, or radiation, anti-PD-1 mAb, and/or a pharmacologic IDO enzyme inhibitor. RESULTS: Advanced age was associated with decreased GBM patient survival regardless of treatment with ICB. The advanced age-associated increase of brain IDO expression was linked to the suppression of immunotherapeutic efficacy and was not reversed by IDO enzyme inhibitor treatment. CONCLUSIONS: Immunosuppression increases in the brain during advanced age and inhibits antiglioma immunity in older adults. Going forward, it will be important to fully understand the factors and mechanisms in the elderly brain that contribute to the decreased survival of older patients with GBM during treatment with ICB.


Assuntos
Encéfalo/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Isocitrato Desidrogenase/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Encéfalo/imunologia , Encéfalo/patologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/imunologia , Modelos Animais de Doenças , Feminino , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Terapia de Imunossupressão/efeitos adversos , Terapia de Imunossupressão/métodos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Intervalo Livre de Progressão
13.
Immunity ; 52(4): 668-682.e7, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294407

RESUMO

The primary mechanisms supporting immunoregulatory polarization of myeloid cells upon infiltration into tumors remain largely unexplored. Elucidation of these signals could enable better strategies to restore protective anti-tumor immunity. Here, we investigated the role of the intrinsic activation of the PKR-like endoplasmic reticulum (ER) kinase (PERK) in the immunoinhibitory actions of tumor-associated myeloid-derived suppressor cells (tumor-MDSCs). PERK signaling increased in tumor-MDSCs, and its deletion transformed MDSCs into myeloid cells that activated CD8+ T cell-mediated immunity against cancer. Tumor-MDSCs lacking PERK exhibited disrupted NRF2-driven antioxidant capacity and impaired mitochondrial respiratory homeostasis. Moreover, reduced NRF2 signaling in PERK-deficient MDSCs elicited cytosolic mitochondrial DNA elevation and, consequently, STING-dependent expression of anti-tumor type I interferon. Reactivation of NRF2 signaling, conditional deletion of STING, or blockade of type I interferon receptor I restored the immunoinhibitory potential of PERK-ablated MDSCs. Our findings demonstrate the pivotal role of PERK in tumor-MDSC functionality and unveil strategies to reprogram immunosuppressive myelopoiesis in tumors to boost cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Epitelial do Ovário/imunologia , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/imunologia , Proteínas de Membrana/imunologia , Neoplasias Cutâneas/imunologia , eIF-2 Quinase/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Feminino , Humanos , Terapia de Imunossupressão , Interferon-alfa/genética , Interferon-alfa/imunologia , Interferon beta/genética , Interferon beta/imunologia , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Resposta a Proteínas não Dobradas/imunologia , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética
14.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L750-L761, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073894

RESUMO

The adaptive immune response could play a major role in the resolution of lung injury. Although regulatory T cells (Tregs) have been implicated in promoting the resolution of lung injury, therapeutic strategies to enhance Treg quantity and activity at the site of injury need further exploration. In the current study, Akt inhibition using triciribine (TCBN), given 48 h after lipopolysaccharide (LPS) administration, increased Tregs-promoted resolution of acute lung injury (ALI). TCBN treatment enhanced the resolution of LPS-induced ALI on day 7 by reducing pulmonary edema and neutrophil activity associated with an increased number of CD4+/FoxP3+/CD103+ and CTLA4+ effector Tregs, specifically in the injured lungs and not in the spleen. Treatment of EL-4 T-lymphocytes with two Akt inhibitors (TCBN and MK-2206) for 72 h resulted in increased FoxP3 expression in vitro. On the other end, Treg-specific PTEN knockout (PTENTreg KO) mice that have a higher Akt activity in its Tregs exhibited a significant impairment in ALI resolution, increased edema, and neutrophil activity associated with a reduced number of CD4+/FoxP3+/CD103+ and CTLA4+ effector Tregs as compared with the control group. In conclusion, our study identifies a potential target for the treatment of late-stage ALI by promoting resolution through effector Treg-mediated suppression of inflammation.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T Reguladores/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Transferência Adotiva/métodos , Animais , Antígenos CD/metabolismo , Antígenos CD4/metabolismo , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Cadeias alfa de Integrinas/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/metabolismo , Baço , Linfócitos T Reguladores/efeitos dos fármacos
15.
Nat Commun ; 11(1): 515, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980601

RESUMO

CD73, an ecto-5'-nucleotidase (NT5E), serves as an immune checkpoint by generating adenosine (ADO), which suppresses immune activation through the A2A receptor. Elevated CD73 levels in tumor tissues correlate with poor clinical outcomes. However, the crucial source of CD73 activity within the tumor microenvironment remains unspecified. Here, we demonstrate that cancer-associated fibroblasts (CAFs) constitute the prominent CD73hi population in human colorectal cancers (CRCs) and two CD73- murine tumor models, including a modified CRC. Clinically, high CAF abundancy in CRC tissues correlates strongly with elevated CD73 activity and poor prognosis. Mechanistically, CAF-CD73 expression is enhanced via an ADO-A2B receptor-mediated feedforward circuit triggered by tumor cell death, which enforces the CD73-checkpoint. Simultaneous inhibition of A2A and A2B pathways with CD73-neutralization synergistically enhances antitumor immunity in CAF-rich tumors. Therefore, the strategic and effective targeting of both the A2B-mediated ADO-CAF-CD73 feedforward circuit and A2A-mediated immune suppression is crucial for improving therapeutic outcomes.


Assuntos
5'-Nucleotidase/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Receptor A2B de Adenosina/metabolismo , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Progressão da Doença , Sinergismo Farmacológico , Células-Tronco Hematopoéticas/metabolismo , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Testes de Neutralização , Transcriptoma/genética , Resultado do Tratamento , Microambiente Tumoral , Regulação para Cima
16.
Blood ; 135(1): 28-40, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31697815

RESUMO

T-cell activation releases inositol 1,4,5-trisphosphate (IP3), inducing cytoplasmic calcium (Ca2+) influx. In turn, inositol 1,4,5-trisphosphate 3-kinase B (Itpkb) phosphorylates IP3 to negatively regulate and thereby tightly control Ca2+ fluxes that are essential for mature T-cell activation and differentiation and protection from cell death. Itpkb pathway inhibition increases intracellular Ca2+, induces apoptosis of activated T cells, and can control T-cell-mediated autoimmunity. In this study, we employed genetic and pharmacological approaches to inhibit Itpkb signaling as a means of controlling graft-versus-host disease (GVHD). Murine-induced, Itpkb-deleted (Itpkb-/-) T cells attenuated acute GVHD in 2 models without eliminating A20-luciferase B-cell lymphoma graft-versus-leukemia (GVL). A highly potent, selective inhibitor, GNF362, ameliorated acute GVHD without impairing GVL against 2 acute myeloid leukemia lines (MLL-AF9-eGFP and C1498-luciferase). Compared with FK506, GNF362 more selectively deleted donor alloreactive vs nominal antigen-responsive T cells. Consistent with these data and as compared with FK506, GNF362 had favorable acute GVHD and GVL properties against MLL-AF9-eGFP cells. In chronic GVHD preclinical models that have a pathophysiology distinct from acute GVHD, Itpkb-/- donor T cells reduced active chronic GVHD in a multiorgan system model of bronchiolitis obliterans (BO), driven by germinal center reactions and resulting in target organ fibrosis. GNF362 treatment reduced active chronic GVHD in both BO and scleroderma models. Thus, intact Itpkb signaling is essential to drive acute GVHD pathogenesis and sustain active chronic GVHD, pointing toward a novel clinical application to prevent acute or treat chronic GVHD.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Leucemia , Leucemia Experimental/complicações , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Tacrolimo/farmacologia , Animais , Doença Crônica , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Imunossupressores/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia
17.
Sci Immunol ; 4(42)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836669

RESUMO

General control nonderepressible 2 (GCN2) is an environmental sensor controlling transcription and translation in response to nutrient availability. Although GCN2 is a putative therapeutic target for immuno-oncology, its role in shaping the immune response to tumors is poorly understood. Here, we used mass cytometry, transcriptomics, and transcription factor-binding analysis to determine the functional impact of GCN2 on the myeloid phenotype and immune responses in melanoma. We found that myeloid-lineage deletion of GCN2 drives a shift in the phenotype of tumor-associated macrophages and myeloid-derived suppressor cells (MDSCs) that promotes antitumor immunity. Time-of-flight mass cytometry (CyTOF) and single-cell RNA sequencing showed that this was due to changes in the immune microenvironment with increased proinflammatory activation of macrophages and MDSCs and interferon-γ expression in intratumoral CD8+ T cells. Mechanistically, GCN2 altered myeloid function by promoting increased translation of the transcription factor CREB-2/ATF4, which was required for maturation and polarization of macrophages and MDSCs in both mice and humans, whereas targeting Atf4 by small interfering RNA knockdown reduced tumor growth. Last, analysis of patients with cutaneous melanoma showed that GCN2-dependent transcriptional signatures correlated with macrophage polarization, T cell infiltrates, and overall survival. Thus, these data reveal a previously unknown dependence of tumors on myeloid GCN2 signals for protection from immune attack.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Macrófagos/imunologia , Melanoma/imunologia , Células Supressoras Mieloides/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Microambiente Tumoral/imunologia , Animais , Células Cultivadas , Humanos , Camundongos
18.
JCI Insight ; 4(19)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31578305

RESUMO

B7-H4 is a negative regulatory B7 family member. We investigated the role of host and donor B7-H4 in regulating acute graft-versus-host disease (GVHD). Allogeneic donor T cells infused into B7-H4-/- versus WT recipients markedly accelerated GVHD-induced lethality. Chimera studies pointed toward B7-H4 expression on host hematopoietic cells as more critical than parenchymal cells in controlling GVHD. Rapid mortality in B7-H4-/- recipients was associated with increased donor T cell expansion, gut T cell homing and loss of intestinal epithelial integrity, increased T effector function (proliferation, proinflammatory cytokines, cytolytic molecules), and reduced apoptosis. Higher metabolic demands of rapidly proliferating donor T cells in B7-H4-/- versus WT recipients required multiple metabolic pathways, increased extracellular acidification rates (ECARs) and oxygen consumption rates (OCRs), and increased expression of fuel substrate transporters. During GVHD, B7-H4 expression was upregulated on allogeneic WT donor T cells. B7-H4-/- donor T cells given to WT recipients increased GVHD mortality and had function and biological properties similar to WT T cells from allogeneic B7-H4-/- recipients. Graft-versus-leukemia responses were intact regardless as to whether B7-H4-/- mice were used as hosts or donors. Taken together, these data provide new insights into the negative regulatory processes that control GVHD and provide support for developing therapeutic strategies directed toward the B7-H4 pathway.


Assuntos
Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/mortalidade , Doadores de Tecidos , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Animais , Transplante de Medula Óssea , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Trato Gastrointestinal/lesões , Pulmão/patologia , Linfoma , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Consumo de Oxigênio , Linfócitos T/metabolismo , Transcriptoma
19.
Blood ; 134(19): 1670-1682, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31533918

RESUMO

Myeloid-derived suppressor cells (MDSCs) can subdue inflammation. In mice with acute graft-versus-host disease (GVHD), donor MDSC infusion enhances survival that is only partial and transient because of MDSC inflammasome activation early posttransfer, resulting in differentiation and loss of suppressor function. Here we demonstrate that conditioning regimen-induced adenosine triphosphate (ATP) release is a primary driver of MDSC dysfunction through ATP receptor (P2x7R) engagement and NLR pyrin family domain 3 (NLRP3) inflammasome activation. P2x7R or NLRP3 knockout (KO) donor MDSCs provided significantly higher survival than wild-type (WT) MDSCs. Although in vivo pharmacologic targeting of NLRP3 or P2x7R promoted recipient survival, indicating in vivo biologic effects, no synergistic survival advantage was seen when combined with MDSCs. Because activated inflammasomes release mature interleukin-1ß (IL-1ß), we expected that IL-1ß KO donor MDSCs would be superior in subverting GVHD, but such MDSCs proved inferior relative to WT. IL-1ß release and IL-1 receptor expression was required for optimal MDSC function, and exogenous IL-1ß added to suppression assays that included MDSCs increased suppressor potency. These data indicate that prolonged systemic NLRP3 inflammasome inhibition and decreased IL-1ß could diminish survival in GVHD. However, loss of inflammasome activation and IL-1ß release restricted to MDSCs rather than systemic inhibition allowed non-MDSC IL-1ß signaling, improving survival. Extracellular ATP catalysis with peritransplant apyrase administered into the peritoneum, the ATP release site, synergized with WT MDSCs, as did regulatory T-cell infusion, which we showed reduced but did not eliminate MDSC inflammasome activation, as assessed with a novel inflammasome reporter strain. These findings will inform future clinical using MDSCs to decrease alloresponses in inflammatory environments.


Assuntos
Trifosfato de Adenosina/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Inflamassomos/imunologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/transplante , Animais , Feminino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA