Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Cell Sci ; 137(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39129673

RESUMO

Golgi-resident enzymes remain in place while their substrates flow through from the endoplasmic reticulum to elsewhere in the cell. COPI-coated vesicles bud from the Golgi to recycle Golgi residents to earlier cisternae. Different enzymes are present in different parts of the stack, and one COPI adaptor protein, GOLPH3, acts to recruit enzymes into vesicles in part of the stack. Here, we used proximity biotinylation to identify further components of intra-Golgi vesicles and found FAM114A2, a cytosolic protein. Affinity chromatography with FAM114A2, and its paralogue FAM114A1, showed that they bind to Golgi-resident membrane proteins, with membrane-proximal basic residues in the cytoplasmic tail being sufficient for the interaction. Deletion of both proteins from U2OS cells did not cause substantial defects in Golgi function. However, a Drosophila orthologue of these proteins (CG9590/FAM114A) is also localised to the Golgi and binds directly to COPI. Drosophila mutants lacking FAM114A have defects in glycosylation of glue proteins in the salivary gland. Thus, the FAM114A proteins bind Golgi enzymes and are candidate adaptors to contribute specificity to COPI vesicle recycling in the Golgi stack.


Assuntos
Complexo de Golgi , Proteínas de Membrana , Complexo de Golgi/metabolismo , Humanos , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ligação Proteica , Transporte Proteico , Complexo I de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/genética , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação
2.
Mol Syst Biol ; 20(6): 651-675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702390

RESUMO

The physical interactome of a protein can be altered upon perturbation, modulating cell physiology and contributing to disease. Identifying interactome differences of normal and disease states of proteins could help understand disease mechanisms, but current methods do not pinpoint structure-specific PPIs and interaction interfaces proteome-wide. We used limited proteolysis-mass spectrometry (LiP-MS) to screen for structure-specific PPIs by probing for protease susceptibility changes of proteins in cellular extracts upon treatment with specific structural states of a protein. We first demonstrated that LiP-MS detects well-characterized PPIs, including antibody-target protein interactions and interactions with membrane proteins, and that it pinpoints interfaces, including epitopes. We then applied the approach to study conformation-specific interactors of the Parkinson's disease hallmark protein alpha-synuclein (aSyn). We identified known interactors of aSyn monomer and amyloid fibrils and provide a resource of novel putative conformation-specific aSyn interactors for validation in further studies. We also used our approach on GDP- and GTP-bound forms of two Rab GTPases, showing detection of differential candidate interactors of conformationally similar proteins. This approach is applicable to screen for structure-specific interactomes of any protein, including posttranslationally modified and unmodified, or metabolite-bound and unbound protein states.


Assuntos
alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Mapeamento de Interação de Proteínas , Espectrometria de Massas , Ligação Proteica , Proteólise , Doença de Parkinson/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Mapas de Interação de Proteínas , Conformação Proteica , Amiloide/metabolismo , Amiloide/química , Proteoma/metabolismo
3.
Sci Adv ; 10(13): eadl0608, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552021

RESUMO

The Golgi-localized golgins golgin-97 and golgin-245 capture transport vesicles arriving from endosomes via the protein TBC1D23. The amino-terminal domain of TBC1D23 binds to the golgins, and the carboxyl-terminal domain of TBC1D23 captures the vesicles, but how it recognizes specific vesicles was unclear. A search for binding partners of the carboxyl-terminal domain unexpectedly revealed direct binding to carboxypeptidase D and syntaxin-16, known cargo proteins of the captured vesicles. Binding is via a threonine-leucine-tyrosine (TLY) sequence present in both proteins next to an acidic cluster. A crystal structure reveals how this acidic TLY motif binds to TBC1D23. An acidic TLY motif is also present in the tails of other endosome-to-Golgi cargo, and these also bind TBC1D23. Structure-guided mutations in the carboxyl-terminal domain that disrupt motif binding in vitro also block vesicle capture in vivo. Thus, TBC1D23 attached to golgin-97 and golgin-245 captures vesicles by a previously undescribed mechanism: the recognition of a motif shared by cargo proteins carried by the vesicle.


Assuntos
Complexo de Golgi , Proteínas de Membrana , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Golgi/metabolismo , Transporte Biológico , Endossomos/metabolismo , Ligação Proteica
4.
PLoS Biol ; 21(8): e3002222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552676

RESUMO

The human genome encodes approximately 20,000 proteins, many still uncharacterised. It has become clear that scientific research tends to focus on well-studied proteins, leading to a concern that poorly understood genes are unjustifiably neglected. To address this, we have developed a publicly available and customisable "Unknome database" that ranks proteins based on how little is known about them. We applied RNA interference (RNAi) in Drosophila to 260 unknown genes that are conserved between flies and humans. Knockdown of some genes resulted in loss of viability, and functional screening of the rest revealed hits for fertility, development, locomotion, protein quality control, and resilience to stress. CRISPR/Cas9 gene disruption validated a component of Notch signalling and 2 genes contributing to male fertility. Our work illustrates the importance of poorly understood genes, provides a resource to accelerate future research, and highlights a need to support database curation to ensure that misannotation does not erode our awareness of our own ignorance.


Assuntos
Drosophila , Fertilidade , Animais , Masculino , Humanos , Drosophila/genética , Interferência de RNA , Fertilidade/genética
5.
EMBO J ; 42(17): e113012, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37409490

RESUMO

Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases.


Assuntos
Proteínas Associadas aos Microtúbulos , Esfingomielinas , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Autofagia , Ubiquitina-Proteína Ligases/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Mamíferos
6.
FEBS Lett ; 597(6): 734-749, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477798

RESUMO

The Transport Protein Particle (TRAPP) complexes are highly conserved multisubunit complexes that act as nucleotide exchange factors (GEFs) for Rab GTPases. They act in both protein secretion and autophagy and have also been proposed to have a role in other processes such as cytokinesis and ciliogenesis. There are two TRAPP complexes in metazoans: TRAPPII, which activates Rab11; and TRAPPIII, which activates Rab1. Both complexes share a core of small subunits that form the active site for the exchange of GDP for GTP. In addition, each TRAPP complex has distinct large subunits that determine the specificity of each complex towards its substrate Rab and are essential for activity in vivo. Crystal structures have revealed the organisation of the TRAPP core and the mechanism of Rab1 activation, whilst recent cryo-EM structures have unveiled the arrangement of the specific subunits around the core to form each complex. Combining these findings with functional experiments has allowed the proposal of mechanisms for how the specificity of each complex towards their cognate Rab is determined and for the arrangement of these large complexes on the membrane.


Assuntos
Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP , Proteínas de Transporte Vesicular/metabolismo , Transporte Proteico/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Complexo de Golgi/metabolismo
7.
Curr Biol ; 32(21): 4549-4564.e6, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36103876

RESUMO

The Golgi is the central sorting station in the secretory pathway and thus the destination of transport vesicles arriving from the endoplasmic reticulum and endosomes and from within the Golgi itself. Cell viability, therefore, requires that the Golgi accurately receives multiple classes of vesicle. One set of proteins proposed to direct vesicle arrival at the Golgi are the golgins, long coiled-coil proteins localized to specific parts of the Golgi stack. In mammalian cells, three of the golgins, TMF, golgin-84, and GMAP-210, can capture intra-Golgi transport vesicles when placed in an ectopic location. However, the individual golgins are not required for cell viability, and mouse knockout mutants only have defects in specific tissues. To further illuminate this system, we examine the Drosophila orthologs of these three intra-Golgi golgins. We show that ectopic forms can capture intra-Golgi transport vesicles, but strikingly, the cargo present in the vesicles captured by each golgin varies between tissues. Loss-of-function mutants show that the golgins are individually dispensable, although the loss of TMF recapitulates the male fertility defects observed in mice. However, the deletion of multiple golgins results in defects in glycosylation and loss of viability. Examining the vesicles captured by a particular golgin when another golgin is missing reveals that the vesicle content in one tissue changes to resemble that of a different tissue. This reveals a plasticity in Golgi organization between tissues, providing an explanation for why the Golgi is sufficiently robust to tolerate the loss of many of the individual components of its membrane traffic machinery.


Assuntos
Drosophila , Complexo de Golgi , Masculino , Camundongos , Animais , Proteínas da Matriz do Complexo de Golgi/genética , Proteínas da Matriz do Complexo de Golgi/metabolismo , Drosophila/genética , Drosophila/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico , Retículo Endoplasmático/metabolismo , Mamíferos
8.
Dev Cell ; 56(23): 3181-3184, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34875223

RESUMO

In our 20th anniversary year, we reflect on how the cell and developmental biology fields have changed since the publication of Developmental Cell's first few issues. In this collection of Voices, authors who published in our early issues discuss the advances that helped shape their field over the past two decades.


Assuntos
Biologia Celular , Biologia do Desenvolvimento , Publicações Periódicas como Assunto/estatística & dados numéricos , Humanos , Fatores de Tempo
9.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34473204

RESUMO

The fidelity of Golgi glycosylation is, in part, ensured by compartmentalization of enzymes within the stack. The COPI adaptor GOLPH3 has been shown to interact with the cytoplasmic tails of a subset of Golgi enzymes and direct their retention. However, other mechanisms of retention, and other roles for GOLPH3, have been proposed, and a comprehensive characterization of the clientele of GOLPH3 and its paralogue GOLPH3L is lacking. GOLPH3's role is of particular interest as it is frequently amplified in several solid tumor types. Here, we apply two orthogonal proteomic methods to identify GOLPH3+3L clients and find that they act in diverse glycosylation pathways or have other roles in the Golgi. Binding studies, bioinformatics, and a Golgi retention assay show that GOLPH3+3L bind the cytoplasmic tails of their clients through membrane-proximal positively charged residues. Furthermore, deletion of GOLPH3+3L causes multiple defects in glycosylation. Thus, GOLPH3+3L are major COPI adaptors that impinge on most, if not all, of the glycosylation pathways of the Golgi.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico , Células Cultivadas , Células HEK293 , Humanos
10.
Nat Commun ; 12(1): 5333, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504087

RESUMO

The Spike (S) protein of SARS-CoV-2 binds ACE2 to direct fusion with host cells. S comprises a large external domain, a transmembrane domain, and a short cytoplasmic tail. Understanding the intracellular trafficking of S is relevant to SARS-CoV-2 infection, and to vaccines expressing full-length S from mRNA or adenovirus vectors. Here we report a proteomic screen for cellular factors that interact with the cytoplasmic tail of S. We confirm interactions with the COPI and COPII vesicle coats, ERM family actin regulators, and the WIPI3 autophagy component. The COPII binding site promotes exit from the endoplasmic reticulum, and although binding to COPI should retain S in the early Golgi where viral budding occurs, there is a suboptimal histidine residue in the recognition motif. As a result, S leaks to the surface where it accumulates and can direct the formation of multinucleate syncytia. Thus, the trafficking signals in the tail of S indicate that syncytia play a role in the SARS-CoV-2 lifecycle.


Assuntos
COVID-19/metabolismo , Membrana Celular/metabolismo , Células Gigantes/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Domínios Proteicos , Proteômica , Células Vero , Montagem de Vírus/genética
11.
EMBO J ; 40(12): e107608, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018214

RESUMO

The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo-EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII-specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease-causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur-TRAPP.


Assuntos
Proteínas de Drosophila/química , Proteínas de Transporte Vesicular/química , Proteínas rab1 de Ligação ao GTP/química , Microscopia Crioeletrônica , Proteínas de Drosophila/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Conformação Proteica , Proteínas de Transporte Vesicular/ultraestrutura , Proteínas rab1 de Ligação ao GTP/ultraestrutura
12.
Nat Commun ; 12(1): 1564, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692360

RESUMO

The lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a-GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations.


Assuntos
Membrana Celular/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/química , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas rab1 de Ligação ao GTP/química , Proteínas rab1 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/química , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteína Beclina-1/química , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Endossomos/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estrutura Secundária de Proteína , Tomografia , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína VPS15 de Distribuição Vacuolar/química , Proteína VPS15 de Distribuição Vacuolar/genética , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética
13.
PLoS Pathog ; 17(1): e1009246, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493182

RESUMO

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infects cells by binding to the host cell receptor ACE2 and undergoing virus-host membrane fusion. Fusion is triggered by the protease TMPRSS2, which processes the viral Spike (S) protein to reveal the fusion peptide. SARS-CoV-2 has evolved a multibasic site at the S1-S2 boundary, which is thought to be cleaved by furin in order to prime S protein for TMPRSS2 processing. Here we show that CRISPR-Cas9 knockout of furin reduces, but does not prevent, the production of infectious SARS-CoV-2 virus. Comparing S processing in furin knockout cells to multibasic site mutants reveals that while loss of furin substantially reduces S1-S2 cleavage it does not prevent it. SARS-CoV-2 S protein also mediates cell-cell fusion, potentially allowing virus to spread virion-independently. We show that loss of furin in either donor or acceptor cells reduces, but does not prevent, TMPRSS2-dependent cell-cell fusion, unlike mutation of the multibasic site that completely prevents syncytia formation. Our results show that while furin promotes both SARS-CoV-2 infectivity and cell-cell spread it is not essential, suggesting furin inhibitors may reduce but not abolish viral spread.


Assuntos
Fusão Celular , Furina/genética , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus , Animais , COVID-19 , Sistemas CRISPR-Cas , Chlorocebus aethiops , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Estrutura Terciária de Proteína , SARS-CoV-2 , Serina Endopeptidases , Células Vero
14.
Nat Commun ; 11(1): 5987, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239640

RESUMO

Intracellular traffic between compartments of the secretory and endocytic pathways is mediated by vesicle-based carriers. The proteomes of carriers destined for many organelles are ill-defined because the vesicular intermediates are transient, low-abundance and difficult to purify. Here, we combine vesicle relocalisation with organelle proteomics and Bayesian analysis to define the content of different endosome-derived vesicles destined for the trans-Golgi network (TGN). The golgin coiled-coil proteins golgin-97 and GCC88, shown previously to capture endosome-derived vesicles at the TGN, were individually relocalised to mitochondria and the content of the subsequently re-routed vesicles was determined by organelle proteomics. Our findings reveal 45 integral and 51 peripheral membrane proteins re-routed by golgin-97, evidence for a distinct class of vesicles shared by golgin-97 and GCC88, and various cargoes specific to individual golgins. These results illustrate a general strategy for analysing intracellular sub-proteomes by combining acute cellular re-wiring with high-resolution spatial proteomics.


Assuntos
Autoantígenos/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Rede trans-Golgi/metabolismo , Autoantígenos/genética , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Proteínas da Matriz do Complexo de Golgi/genética , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteômica/métodos , Análise Espacial
15.
Curr Biol ; 30(15): 2974-2983.e6, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32649908

RESUMO

Pathogenic bacteria enter the cytosol of host cells through uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the vacuolar membrane [1]. Bacterial invaders are sensed either directly, through cytosolic pattern-recognition receptors specific for bacterial ligands, or indirectly, through danger receptors that bind host molecules displayed in an abnormal context, for example, glycans on damaged BCVs [2-4]. In contrast to damage caused by Listeria monocytogenes, a Gram-positive bacterium, BCV rupture by Gram-negative pathogens such as Shigella flexneri or Salmonella Typhimurium remains incompletely understood [5, 6]. The latter may cause membrane damage directly, when inserting their Type Three Secretion needles into host membranes, or indirectly through translocated bacterial effector proteins [7-9]. Here, we report that sphingomyelin, an abundant lipid of the luminal leaflet of BCV membranes, and normally absent from the cytosol, becomes exposed to the cytosol as an early predictive marker of BCV rupture by Gram-negative bacteria. To monitor subcellular sphingomyelin distribution, we generated a live sphingomyelin reporter from Lysenin, a sphingomyelin-specific toxin from the earthworm Eisenia fetida [10, 11]. Using super resolution live imaging and correlative light and electron microscopy (CLEM), we discovered that BCV rupture proceeds through two distinct successive stages: first, sphingomyelin is gradually translocated into the cytosolic leaflet of the BCV, invariably followed by cytosolic exposure of glycans, which recruit galectin-8, indicating bacterial entry into the cytosol. Exposure of sphingomyelin on BCVs may therefore act as an early danger signal alerting the cell to imminent bacterial invasion.


Assuntos
Enterobacteriaceae/patogenicidade , Esfingomielinas/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Membrana Celular/patologia , Citosol/metabolismo , Citosol/microbiologia , Galectinas/metabolismo , Humanos , Polissacarídeos/efeitos adversos , Polissacarídeos/metabolismo , Esfingomielinas/efeitos adversos , Vacúolos/patologia
16.
Elife ; 82019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31294692

RESUMO

The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mapeamento de Interação de Proteínas , Biotinilação , Humanos , Proteínas Mitocondriais/metabolismo , Biologia Molecular/métodos , Ligação Proteica
17.
FEBS Lett ; 593(17): 2452-2465, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31344261

RESUMO

The Golgi apparatus is an important site for the modification of most secreted and membrane proteins. Glycan processing is the major class of modification and is mediated by a large number of Golgi-resident glycosyltransferases and glycosidases. These Golgi enzymes are largely type II transmembrane domain (TMD) proteins consisting of a short N-terminal cytosolic tail, a relatively short TMD and a lumenal 'stem/stalk' region which acts as a spacer between the catalytic domain and the lipid bilayer. The cytosolic tail, TMD, and stem together make what is termed the CTS domain which is responsible for the specific localisation of these enzymes within sub-Golgi compartments via multiple mechanisms. In addition, the catalytic domains of some Golgi enzymes are secreted as a consequence of proteolytic cleavage within their TMDs or stem regions. Finally, there is evidence to suggest that when the retention of Golgi enzymes is perturbed they are targeted for lysosomal degradation.


Assuntos
Complexo de Golgi/enzimologia , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Humanos , Domínios Proteicos , Transporte Proteico
18.
Curr Opin Cell Biol ; 59: 140-146, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31154044

RESUMO

All cells contain numerous membrane-bound organelles that carry out specific functions. These compartments do not, however, act in isolation. Some are in direct contact via membrane contact sites, while others exchange material via specific vesicles or tubular carriers laden with cargo. The term tethering in the context of this review is used to describe the primary recognition and docking of transport carriers with acceptor organelles that occurs before SNARE engagement and membrane fusion. However, it is important to note that other tethering events occur, for example, between organelles in direct contact, which do not lead to fusion.


Assuntos
Vesículas Transportadoras/metabolismo , Animais , Transporte Biológico , Exocitose , Humanos , Fusão de Membrana , Ligação Proteica , Proteínas SNARE/metabolismo
19.
Biol Open ; 7(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30115618

RESUMO

The small GTPase Arl8 has emerged as a major regulatory GTPase on lysosomes. Studies in mammalian cells have shown that it regulates both fusion with late endosomes and also lysosomal motility. In its active GTP-bound state, it recruits to lysosomes the HOPS (homotypic fusion and protein sorting) endosomal tethering complex and also proteins that link lysosomes to microtubule motors such as the kinesin adaptor PLEKHM2. To gain further insights into Arl8 biology, we examined the single Drosophila ortholog. Drosophila Arl8 is essential for viability, and mitotic clones of mutant cells are able to continue to divide but show perturbation of the late endocytic pathway. Progeny-lacking Arl8 die as late larvae with movement-paralysis characteristic of defects in neuronal function. This phenotype was rescued by expression of Arl8 in motor neurons. Examination of these neurons in the mutant larvae revealed smaller synapses and axons with elevated levels of carriers containing synaptic components. Affinity chromatography revealed binding of Drosophila Arl8 to the HOPS complex, and to the Drosophila ortholog of RILP, a protein that, in mammals, recruits dynein to late endosomes, with dynein being known to be required for neuronal transport. Thus Drosophila Arl8 controls late endocytic function and transport via at least two distinct effectors.This article has an associated First Person interview with the first author of the paper.

20.
Curr Biol ; 28(8): R374-R376, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29689216
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA