RESUMO
BACKGROUND: Data science skills are highly relevant for clinicians working in an era of big data in healthcare. However, these skills are not routinely taught, representing a growing unmet educational need. This education report presents a structured short course that was run to teach clinicians data science and the lessons learnt. METHODS: A 1-day introductory course was conducted within a tertiary hospital in London. It consisted of lectures followed by facilitated pair programming exercises in R, an object-oriented programming language. Feedback was collated and participant responses were graded using a Likert scale. RESULTS: The course was attended by 20 participants. The majority of participants (69%) were in higher speciality cardiology training. While more than half of the participants (56%) received prior training in statistics either through formal taught programmes (e.g., a Master's degree) or online courses, the participants reported several barriers to expanding their skills in data science due to limited programming skills, lack of dedicated time, training opportunities and awareness. After the short course, there was a significant increase in participants' self-rated confidence in using R for data analysis (mean response; before the course: 1.69 ± 1.0, after the course: 3.2 ± 0.9, p = .0005) and awareness of the capabilities of R (mean response; before the course: 2.1 ± 0.9, after the course: 3.6 ± 0.7, p = .0001, on a 5-point Likert scale). CONCLUSION: This proof-of-concept study demonstrates that a structured short course can effectively introduce data science skills to clinicians and supports future educational initiatives to integrate data science teaching into medical education.
RESUMO
Precision medicine, which among other aspects includes an individual's genomic data in diagnosis and management, has become the standard-of-care for Mendelian cardiovascular disease (CVD). However, early identification and management of asymptomatic patients with potentially lethal and manageable Mendelian CVD through screening, which is the promise of precision health, remains an unsolved challenge. The reduced costs of genomic sequencing have enabled the creation of biobanks containing in-depth genetic and health information, which have facilitated the understanding of genetic variation, penetrance, and expressivity, moving us closer to the genotype-first screening of asymptomatic individuals for Mendelian CVD. This approach could transform health care by diagnostic refinement and facilitating prevention or therapeutic interventions. Yet, potential benefits must be weighed against the potential risks, which include evolving variant pathogenicity assertion or identification of variants with low disease penetrance; costly, stressful, and inappropriate diagnostic evaluations; negative psychological impact; disqualification for employment or of competitive sports; and denial of insurance. Furthermore, the natural history of Mendelian CVD is often unpredictable, making identification of those who will benefit from preventive measures a priority. Currently, there is insufficient evidence that population-based genetic screening for Mendelian CVD can reduce adverse outcomes at a reasonable cost to an extent that outweighs the harms of true-positive and false-positive results. Besides technical, clinical, and financial burdens, ethical and legal aspects pose unprecedented challenges. This review highlights key developments in the field of genotype-first approaches to Mendelian CVD and summarizes challenges with potential solutions that can pave the way for implementing this approach for clinical care.
RESUMO
Background: Periodontal disease is the sixth most common disease worldwide and may be a contributory risk factor for cardiovascular disease (CVD). Objectives: This study utilizes noninvasive cardiac imaging and longitudinal and genetic data to characterize the association between periodontal disease and both cardiovascular magnetic resonance (CMR) imaging biomarkers of remodeling and incident coronary artery disease (CAD). Methods: From the UK Biobank, 481,915 individuals were included, 91,022 (18.9%) of whom had self-reported periodontal disease. For imaging analysis, 59,019 had paired CMR data. Multivariable linear regression models were constructed to examine the association of periodontal disease on CMR outcomes. The endpoints for the CMR analyses were left ventricle (LV) end-diastolic volume, LV ejection fraction, LV mass, LV mass:volume ratio, LV global longitudinal strain, and native T1 values. The relationship between periodontal disease and CVD was assessed using Cox proportional hazards regression models, with incident CAD as the endpoint. To examine the relationship of genetically determined periodontal disease on CAD, a genome-wide polygenic risk score was constructed. Results: Periodontal disease was associated with a significantly higher LV mass:volume ratio (effect size: 0.00233; 95% CI: 0.0006-0.004) and significantly lower T1 values (effect size: -0.86 ms; 95% CI: -1.63 to -0.09). Periodontal disease was independently associated with an increased hazard of incident CAD (HR: 1.09; 95% CI: 1.07-1.13) at a median follow-up time of 13.8 years. Each SD increase in the periodontal disease polygenic risk score was associated with increased odds of CAD (OR: 1.03; 95% CI: 1.02-1.05). Conclusions: Using an integrated approach across imaging, observational, and genomic data, periodontal disease is associated with biomarkers of subclinical remodeling as well as incident CAD. These findings highlight the potential importance of periodontal disease in the broader context of CVD prevention.
RESUMO
Importance: The population prevalence of cardiac transthyretin amyloidosis (ATTR) caused by pathogenic variation in the TTR gene (vATTR) is unknown. Objective: To estimate the population prevalence of disease-causing TTR variants and evaluate associated phenotypes and outcomes. Design, Setting, and Participants: This population-based cohort study analyzed UK Biobank (UKB) participants with whole-exome sequencing, electrocardiogram, and cardiovascular magnetic resonance data. Participants were enrolled from 2006 to 2010, with a median follow-up of 12 (IQR, 11-13) years (cutoff date for the analysis, March 12, 2024). Sixty-two candidate TTR variants were extracted based on rarity (minor allele frequency ≤0.0001) and/or previously described associations with amyloidosis if more frequent. Exposure: Carrier status for TTR variants. Main Outcomes and Measures: Associations of TTR carrier status with vATTR prevalence and cardiovascular imaging and electrocardiogram traits were explored using descriptive statistics. Associations between TTR carrier status and atrial fibrillation, conduction disease, heart failure, and all-cause mortality were evaluated using adjusted Cox proportional hazards models. Genotypic and diagnostic concordance was examined using International Statistical Classification of Diseases, Tenth Revision codes from the hospital record. Results: The overall cohort included 469â¯789 UKB participants (mean [SD] age, 56.5 [8.1] years; 54.2% female and 45.8% male). A likely pathogenic/pathogenic (LP/P) TTR variant was detected in 473 (0.1%) participants, with Val142Ile being the most prevalent (367 [77.6%]); 91 individuals (0.02%) were carriers of a variant of unknown significance . The overall prevalence of LP/P variants was 0.02% (105 of 444â¯243) in participants with European ancestry and 4.3% (321 of 7533) in participants with African ancestry. The LP/P variants were associated with higher left ventricular mass indexed to body surface area (ß = 4.66; 95% CI, 1.87-7.44), and Val142Ile was associated with a longer PR interval (ß = 18.34; 95% CI, 5.41-31.27). The LP/P carrier status was associated with a higher risk of heart failure (hazard ratio [HR], 2.68; 95% CI, 1.75-4.12) and conduction disease (HR, 1.88; 95% CI, 1.25-2.83). Higher all-cause mortality risk was observed for non-Val142Ile LP/P variants (HR, 1.98; 95% CI, 1.06-3.67). Thirteen participants (2.8%) with LP/P variants had diagnostic codes compatible with cardiac or neurologic amyloidosis. Variants of unknown significance were not associated with outcomes. Conclusions and Relevance: This study found that approximately 1 in 1000 UKB participants were LP/P TTR variant carriers, exceeding previously reported prevalence. The findings emphasize the need for clinical vigilance in identifying individuals at risk of developing vATTR and associated poor outcomes.
RESUMO
An elevated resting heart rate (RHR) is associated with increased cardiovascular mortality. Genome-wide association studies (GWAS) have identified > 350 loci. Uniquely, in this study we applied genetic fine-mapping leveraging tissue specific chromatin segmentation and colocalization analyses to identify causal variants and candidate effector genes for RHR. We used RHR GWAS summary statistics from 388,237 individuals of European ancestry from UK Biobank and performed fine mapping using publicly available genomic annotation datasets. High-confidence causal variants (accounting for > 75% posterior probability) were identified, and we collated candidate effector genes using a multi-omics approach that combined evidence from colocalisation with molecular quantitative trait loci (QTLs), and long-range chromatin interaction analyses. Finally, we performed druggability analyses to investigate drug repurposing opportunities. The fine mapping pipeline indicated 442 distinct RHR signals. For 90 signals, a single variant was identified as a high-confidence causal variant, of which 22 were annotated as missense. In trait-relevant tissues, 39 signals colocalised with cis-expression QTLs (eQTLs), 3 with cis-protein QTLs (pQTLs), and 75 had promoter interactions via Hi-C. In total, 262 candidate genes were highlighted (79% had promoter interactions, 15% had a colocalised eQTL, 8% had a missense variant and 1% had a colocalised pQTL), and, for the first time, enrichment in nervous system pathways. Druggability analyses highlighted ACHE, CALCRL, MYT1 and TDP1 as potential targets. Our genetic fine-mapping pipeline prioritised 262 candidate genes for RHR that warrant further investigation in functional studies, and we provide potential therapeutic targets to reduce RHR and cardiovascular mortality.
Assuntos
Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Frequência Cardíaca , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Humanos , Estudo de Associação Genômica Ampla/métodos , Frequência Cardíaca/genética , Mapeamento Cromossômico/métodos , Masculino , FemininoRESUMO
Resistance to inhibitors of cholinesterases (ric-8 proteins) are involved in modulating G-protein function, but little is known of their potential physiological importance in the heart. In the present study, we assessed the role of resistance to inhibitors of cholinesterase 8b (Ric-8b) in determining cardiac contractile function. We developed a murine model in which it was possible to conditionally delete ric-8b in cardiac tissue in the adult animal after the addition of tamoxifen. Deletion of ric-8b led to severely reduced contractility as measured using echocardiography days after administration of tamoxifen. Histological analysis of the ventricular tissue showed highly variable myocyte size, prominent fibrosis, and an increase in cellular apoptosis. RNA sequencing revealed transcriptional remodeling in response to cardiac ric-8b deletion involving the extracellular matrix and inflammation. Phosphoproteomic analysis revealed substantial downregulation of phosphopeptides related to myosin light chain 2. At the cellular level, the deletion of ric-8b led to loss of activation of the L-type calcium channel through the ß-adrenergic pathways. Using fluorescence resonance energy transfer-based assays, we showed ric-8b protein selectively interacts with the stimulatory G-protein, Gαs. We explored if deletion of Gnas (the gene encoding Gαs) in cardiac tissue using a similar approach in the mouse led to an equivalent phenotype. The conditional deletion of the Gαs gene in the ventricle led to comparable effects on contractile function and cardiac histology. We conclude that ric-8b is essential to preserve cardiac contractile function likely through an interaction with the stimulatory G-protein and downstream phosphorylation of myosin light chain 2.
Assuntos
Contração Miocárdica , Animais , Camundongos , Contração Miocárdica/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Cadeias Leves de Miosina/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/genética , Miocárdio/metabolismo , Miocárdio/patologia , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Inibidores da Colinesterase/farmacologia , Masculino , Apoptose/efeitos dos fármacos , Fatores de Troca do Nucleotídeo GuaninaRESUMO
ABSTRACT: The leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) was recently identified as the cognate receptor for the proresolving mediator maresin 1 (MaR1). To address the biological role of LGR6 in humans, we investigated the functional impact of a genetic variant in the gene encoding for LGR6, which is predicted to lead to a frameshift mutation in one of the receptor isoforms, on both receptor expression and immune cell responses. In neutrophils, monocytes, and natural killer (NK) cells from volunteers homozygous for this variant, we found a significant downregulation in the expression of LGR6 when compared with controls without the variant; whereas the LGR6 expression was essentially similar in monocyte-derived macrophages and CD8+ T cells. Functionally, loss of LGR6 expression was linked with a decreased ability of neutrophils and monocytes to phagocytose bacteria. We observed an increase in neutrophil chemotaxis and leukotriene B4 production and increased expression of activation markers, including markers for platelet-leukocyte phagocyte heterotypic aggregates, such as CD41, in neutrophils and monocytes from the variant group. Using data from the UK Biobank, we found that at a population level the rs4266947 variant, which is in high linkage disequilibrium with rs74355478, was associated with a higher incidence of viral infections. Intriguingly, neutrophils, NK cells, and CD8+ T cells from volunteers with the LGR6 variant displayed altered viral responses when stimulated with Toll-like receptor 3 (TLR3), TLR7/TLR8, and TLR9 agonists. Together, these findings shed new light on the cell type-specific regulation of LGR6 expression and the role of this receptor in directing host immune responses.
Assuntos
Mutação da Fase de Leitura , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Viroses/imunologia , Viroses/genética , Masculino , Feminino , Fagocitose , Neutrófilos/metabolismo , Neutrófilos/imunologia , Leucócitos/metabolismo , Leucócitos/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Pessoa de Meia-Idade , Adulto , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismoRESUMO
Variability in quantitative traits has clinical, ecological, and evolutionary significance. Most genetic variants identified for complex quantitative traits have only a detectable effect on the mean of trait. We have developed the mean-variance test (MVtest) to simultaneously model the mean and log-variance of a quantitative trait as functions of genotypes and covariates by using estimating equations. The advantages of MVtest include the facts that it can detect effect modification, that multiple testing can follow conventional thresholds, that it is robust to non-normal outcomes, and that association statistics can be meta-analyzed. In simulations, we show control of type I error of MVtest over several alternatives. We identified 51 and 37 previously unreported associations for effects on blood-pressure variance and mean, respectively, in the UK Biobank. Transcriptome-wide association studies revealed 633 significant unique gene associations with blood-pressure mean variance. MVtest is broadly applicable to studies of complex quantitative traits and provides an important opportunity to detect novel loci.
Assuntos
Pressão Sanguínea , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Pressão Sanguínea/genética , Polimorfismo de Nucleotídeo Único , Modelos Genéticos , Genótipo , Variação Genética , Simulação por Computador , FenótipoRESUMO
Metabolomic age models have been proposed for the study of biological aging, however, they have not been widely validated. We aimed to assess the performance of newly developed and existing nuclear magnetic resonance spectroscopy (NMR) metabolomic age models for prediction of chronological age (CA), mortality, and age-related disease. Ninety-eight metabolic variables were measured in blood from nine UK and Finnish cohort studies (N ≈31,000 individuals, age range 24-86 years). We used nonlinear and penalized regression to model CA and time to all-cause mortality. We examined associations of four new and two previously published metabolomic age models, with aging risk factors and phenotypes. Within the UK Biobank (N ≈102,000), we tested prediction of CA, incident disease (cardiovascular disease (CVD), type-2 diabetes mellitus, cancer, dementia, and chronic obstructive pulmonary disease), and all-cause mortality. Seven-fold cross-validated Pearson's r between metabolomic age models and CA ranged between 0.47 and 0.65 in the training cohort set (mean absolute error: 8-9 years). Metabolomic age models, adjusted for CA, were associated with C-reactive protein, and inversely associated with glomerular filtration rate. Positively associated risk factors included obesity, diabetes, smoking, and physical inactivity. In UK Biobank, correlations of metabolomic age with CA were modest (r = 0.29-0.33), yet all metabolomic model scores predicted mortality (hazard ratios of 1.01 to 1.06/metabolomic age year) and CVD, after adjustment for CA. While metabolomic age models were only moderately associated with CA in an independent population, they provided additional prediction of morbidity and mortality over CA itself, suggesting their wider applicability.
Assuntos
Envelhecimento , Espectroscopia de Ressonância Magnética , Metabolômica , Humanos , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Adulto , Metabolômica/métodos , Masculino , Feminino , Espectroscopia de Ressonância Magnética/métodos , Longevidade , Estudos de Coortes , Adulto Jovem , Fatores de Risco , Finlândia/epidemiologiaRESUMO
BACKGROUND: The Dietary Approaches to Stop Hypertension (DASH) diet score lowers blood pressure (BP). We examined interactions between genotype and the DASH diet score in relation to systolic BP. METHODS: We analyzed up to 9â 420â 585 single nucleotide polymorphisms in up to 127â 282 individuals of 6 population groups (91% of European population) from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (n=35â 660) and UK Biobank (n=91â 622) and performed European population-specific and cross-population meta-analyses. RESULTS: We identified 3 loci in European-specific analyses and an additional 4 loci in cross-population analyses at Pinteraction<5e-8. We observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency, 0.03) and the DASH diet score (Pinteraction=4e-8; P for heterogeneity, 0.35) in European population, where the interaction effect size was 0.42±0.09 mmâ Hg (Pinteraction=9.4e-7) and 0.20±0.06 mmâ Hg (Pinteraction=0.001) in Cohorts for Heart and Aging Research in Genomic Epidemiology and the UK Biobank, respectively. The 1 Mb region surrounding rs117878928 was enriched with cis-expression quantitative trait loci (eQTL) variants (P=4e-273) and cis-DNA methylation quantitative trait loci variants (P=1e-300). Although the closest gene for rs117878928 is MTHFS, the highest narrow sense heritability accounted by single nucleotide polymorphisms potentially interacting with the DASH diet score in this locus was for gene ST20 at 15q25.1. CONCLUSIONS: We demonstrated gene-DASH diet score interaction effects on systolic BP in several loci. Studies with larger diverse populations are needed to validate our findings.
Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Hipertensão , Humanos , Pressão Sanguínea/genética , Dieta , GenótipoRESUMO
Heart rate variability (HRV) is a cardiac autonomic marker with predictive value in cardiac patients. Ultra-short HRV (usHRV) can be measured at scale using standard and wearable ECGs, but its association with cardiovascular events in the general population is undetermined. We aimed to validate usHRV measured using ≤ 15-s ECGs (using RMSSD, SDSD and PHF indices) and investigate its association with atrial fibrillation, major adverse cardiac events, stroke and mortality in individuals without cardiovascular disease. In the National Survey for Health and Development (n = 1337 participants), agreement between 15-s and 6-min HRV, assessed with correlation analysis and Bland-Altman plots, was very good for RMSSD and SDSD and good for PHF. In the UK Biobank (n = 51,628 participants, 64% male, median age 58), after a median follow-up of 11.5 (11.4-11.7) years, incidence of outcomes ranged between 1.7% and 4.3%. Non-linear Cox regression analysis showed that reduced usHRV from 15-, 10- and 5-s ECGs was associated with all outcomes. Individuals with low usHRV (< 20th percentile) had hazard ratios for outcomes between 1.16 and 1.29, p < 0.05, with respect to the reference group. In conclusion, usHRV from ≤ 15-s ECGs correlates with standard short-term HRV and predicts increased risk of cardiovascular events in a large population-representative cohort.
Assuntos
Doenças Cardiovasculares , Eletrocardiografia , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Frequência Cardíaca/fisiologia , Eletrocardiografia/métodos , Sistema Nervoso Autônomo/fisiologia , Doenças Cardiovasculares/epidemiologia , Modelos de Riscos ProporcionaisRESUMO
Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.
RESUMO
Metabolomic age models have been proposed for the study of biological aging, however they have not been widely validated. We aimed to assess the performance of newly developed and existing nuclear magnetic resonance spectroscopy (NMR) metabolomic age models for prediction of chronological age (CA), mortality, and age-related disease. 98 metabolic variables were measured in blood from nine UK and Finnish cohort studies (N ≈ 31,000 individuals, age range 24-86 years). We used non-linear and penalised regression to model CA and time to all-cause mortality. We examined associations of four new and two previously published metabolomic age models, with ageing risk factors and phenotypes. Within the UK Biobank (N≈ 102,000), we tested prediction of CA, incident disease (cardiovascular disease (CVD), type-2 diabetes mellitus, cancer, dementia, chronic obstructive pulmonary disease) and all-cause mortality. Cross-validated Pearson's r between metabolomic age models and CA ranged between 0.47-0.65 in the training set (mean absolute error: 8-9 years). Metabolomic age models, adjusted for CA, were associated with C-reactive protein, and inversely associated with glomerular filtration rate. Positively associated risk factors included obesity, diabetes, smoking, and physical inactivity. In UK Biobank, correlations of metabolomic age with chronological age were modest (r = 0.29-0.33), yet all metabolomic model scores predicted mortality (hazard ratios of 1.01 to 1.06 / metabolomic age year) and CVD, after adjustment for CA. While metabolomic age models were only moderately associated with CA in an independent population, they provided additional prediction of morbidity and mortality over CA itself, suggesting their wider applicability.
RESUMO
Objective: We examined interactions between genotype and a Dietary Approaches to Stop Hypertension (DASH) diet score in relation to systolic blood pressure (SBP). Methods: We analyzed up to 9,420,585 biallelic imputed single nucleotide polymorphisms (SNPs) in up to 127,282 individuals of six population groups (91% of European population) from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (CHARGE; n=35,660) and UK Biobank (n=91,622) and performed European population-specific and cross-population meta-analyses. Results: We identified three loci in European-specific analyses and an additional four loci in cross-population analyses at P for interaction < 5e-8. We observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency = 0.03) and the DASH diet score (P for interaction = 4e-8; P for heterogeneity = 0.35) in European population, where the interaction effect size was 0.42±0.09 mm Hg (P for interaction = 9.4e-7) and 0.20±0.06 mm Hg (P for interaction = 0.001) in CHARGE and the UK Biobank, respectively. The 1 Mb region surrounding rs117878928 was enriched with cis-expression quantitative trait loci (eQTL) variants (P = 4e-273) and cis-DNA methylation quantitative trait loci (mQTL) variants (P = 1e-300). While the closest gene for rs117878928 is MTHFS, the highest narrow sense heritability accounted by SNPs potentially interacting with the DASH diet score in this locus was for gene ST20 at 15q25.1. Conclusion: We demonstrated gene-DASH diet score interaction effects on SBP in several loci. Studies with larger diverse populations are needed to validate our findings.
RESUMO
BACKGROUND: The consequences of exercise-induced premature ventricular contractions (PVCs) in asymptomatic individuals remain unclear. This study aimed to assess the association between PVC burdens during submaximal exercise and major adverse cardiovascular events (MI/HF/LTVA: myocardial infarction [MI], heart failure [HF], and life-threatening ventricular arrhythmia [LTVA]), and all-cause mortality. Additional end points were MI, LTVA, HF, and cardiovascular mortality. METHODS: A neural network was developed to count PVCs from ECGs recorded during exercise (6 minutes) and recovery (1 minute) in 48 315 asymptomatic participants from UK Biobank. Associations were estimated using multivariable Cox proportional hazard models. Explorative studies were conducted in subgroups with cardiovascular magnetic resonance imaging data (n=6290) and NT-proBNP (N-terminal Pro-B-type natriuretic peptide) levels (n=4607) to examine whether PVC burden was associated with subclinical cardiomyopathy. RESULTS: Mean age was 56.8±8.2 years; 51.1% of the participants were female; and median follow-up was 12.6 years. Low PVC counts during exercise and recovery were both associated with MI/HF/LTVA risk, independently of clinical factors: adjusted hazard ratio (HR), 1.2 (1-5 exercise PVCs, P<0.001) and HR, 1.3 (1-5 recovery PVCs, P<0.001). Risks were higher with increasing PVC count: HR, 1.8 (>20 exercise PVCs, P<0.001) and HR, 1.6 (>5 recovery PVCs, P<0.001). A similar trend was observed for all-cause mortality, although associations were only significant for high PVC burdens: HRs, 1.6 (>20 exercise PVCs, P<0.001) and 1.5 (>5 recovery PVCs, P<0.001). Complex PVC rhythms were associated with higher risk compared with PVC count alone. PVCs were also associated with incident HF, LTVA, and cardiovascular mortality, but not MI. In the explorative studies, high PVC burden was associated with larger left ventricular volumes, lower ejection fraction, and higher levels of NT-proBNP compared with participants without PVCs. CONCLUSIONS: In this cohort of middle-aged and older adults, PVC count during submaximal exercise and recovery were both associated with MI/HF/LTVA, all-cause mortality, HF, LTVAs, and cardiovascular mortality, independent of clinical and exercise test factors, indicating an incremental increase in risk as PVC count rises. Complex PVC rhythms were associated with higher risk compared with PVC count alone. Underlying mechanisms may include the presence of subclinical cardiomyopathy.
Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Infarto do Miocárdio , Complexos Ventriculares Prematuros , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Masculino , Prognóstico , Complexos Ventriculares Prematuros/complicações , Bancos de Espécimes Biológicos , Insuficiência Cardíaca/complicações , Cardiomiopatias/complicações , Infarto do Miocárdio/complicaçõesRESUMO
Aims: Heart failure (HF) is a major health problem and early diagnosis is important. Atherosclerosis is the main cause of HF and carotid intima-media thickness (IMT) is a recognized early measure of atherosclerosis. This study aimed to investigate whether increased carotid IMT is associated with changes in cardiac structure and function in middle-aged participants of the UK Biobank Study without overt cardiovascular disease. Methods and results: Participants of the UK Biobank who underwent CMR and carotid ultrasound examinations were included in this study. Patients with heart failure, angina, atrial fibrillation, and history of myocardial infarction or stroke were excluded. We used multivariable linear regression models adjusted for age, sex, physical activity, body mass index, body surface area, hypertension, diabetes, smoking, ethnicity, socioeconomic status, alcohol intake, and laboratory parameters. In total, 4301 individuals (61.6 ± 7.5 years, 45.9% male) were included. Multivariable linear regression analyses showed that increasing quartiles of IMT was associated with increased left and right ventricular (LV and RV) and left atrial volumes and greater LV mass. Moreover, increased IMT was related to lower LV end-systolic circumferential strain, torsion, and both left and right atrial ejection fractions (all P < 0.05). Conclusion: Increased IMT showed an independent association over traditional risk factors with enlargement of all four cardiac chambers, decreased function in both atria, greater LV mass, and subclinical LV dysfunction. There may be additional risk stratification that can be derived from the IMT to identify those most likely to have early cardiac structural/functional changes.
RESUMO
Genome-wide association studies of blood pressure (BP) have identified >1,000 loci, but the effector genes and biological pathways at these loci are mostly unknown. Using published association summary statistics, we conducted annotation-informed fine-mapping incorporating tissue-specific chromatin segmentation and colocalization to identify causal variants and candidate effector genes for systolic BP, diastolic BP, and pulse pressure. We observed 532 distinct signals associated with ≥2 BP traits and 84 with all three. For >20% of signals, a single variant accounted for >75% posterior probability, 65 were missense variants in known (SLC39A8, ADRB2, and DBH) and previously unreported BP candidate genes (NRIP1 and MMP14). In disease-relevant tissues, we colocalized >80 and >400 distinct signals for each BP trait with cis-eQTLs and regulatory regions from promoter capture Hi-C, respectively. Integrating mouse, human disorder, gene expression and tissue abundance data, and literature review, we provide consolidated evidence for 436 BP candidate genes for future functional validation and discover several potential drug targets.
Assuntos
Estudo de Associação Genômica Ampla , Hipertensão , Humanos , Animais , Camundongos , Locos de Características Quantitativas/genética , Multiômica , Predisposição Genética para Doença , Hipertensão/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on 'around the clock' glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification.
Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Estudo de Associação Genômica Ampla , Glicemia/genética , Diabetes Mellitus Tipo 2/genética , ColoRESUMO
BACKGROUND: Inherited cardiomyopathies present with broad variation of phenotype. Data are limited regarding genetic screening strategies and outcomes associated with predicted deleterious variants in cardiomyopathy-associated genes in the general population. OBJECTIVES: The authors aimed to determine the risk of mortality and composite cardiomyopathy-related outcomes associated with predicted deleterious variants in cardiomyopathy-associated genes in the UK Biobank. METHODS: Using whole exome sequencing data, variants in dilated, hypertrophic, and arrhythmogenic right ventricular cardiomyopathy-associated genes with at least moderate evidence of disease causality according to ClinGen Expert Panel curations were annotated using REVEL (≥0.65) and ANNOVAR (predicted loss-of-function) considering gene-disease mechanisms. Genotype-positive and genotype-negative groups were compared using time-to-event analyses for the primary (all-cause mortality) and secondary outcomes (diagnosis of cardiomyopathy; composite outcome of diagnosis of cardiomyopathy, heart failure, arrhythmia, stroke, and death). RESULTS: Among 200,619 participants (age at recruitment 56.46 ± 8.1 years), 5,292 (2.64%) were found to host ≥1 predicted deleterious variants in cardiomyopathy-associated genes (CMP-G+). After adjusting for age and sex, CMP-G+ individuals had higher risk for all-cause mortality (HR: 1.13 [95% CI: 1.01-1.25]; P = 0.027), increased risk for being diagnosed with cardiomyopathy later in life (HR: 5.75 [95% CI: 4.58-7.23]; P < 0.0001), and elevated risk for composite outcome (HR: 1.29 [95% CI: 1.20-1.39]; P < 0.0001) than CMP-G- individuals. The higher risk for being diagnosed with cardiomyopathy and composite outcomes in the genotype-positive subjects remained consistent across all cardiomyopathy subgroups. CONCLUSIONS: Adults with predicted deleterious variants in cardiomyopathy-associated genes exhibited a slightly higher risk of mortality and a significantly increased risk of developing cardiomyopathy, and cardiomyopathy-related composite outcomes, in comparison with genotype-negative controls.