Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Sci Rep ; 14(1): 19359, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169044

RESUMO

The druggable proteome refers to proteins that can bind to small molecules with appropriate chemical affinity, inducing a favorable clinical response. Predicting druggable proteins through screening and in silico modeling is imperative for drug design. To contribute to this field, we developed an accurate predictive classifier for druggable cancer-driving proteins using amino acid composition descriptors of protein sequences and 13 machine learning linear and non-linear classifiers. The optimal classifier was achieved with the support vector machine method, utilizing 200 tri-amino acid composition descriptors. The high performance of the model is evident from an area under the receiver operating characteristics (AUROC) of 0.975 ± 0.003 and an accuracy of 0.929 ± 0.006 (threefold cross-validation). The machine learning prediction model was enhanced with multi-omics approaches, including the target-disease evidence score, the shortest pathways to cancer hallmarks, structure-based ligandability assessment, unfavorable prognostic protein analysis, and the oncogenic variome. Additionally, we performed a drug repurposing analysis to identify drugs with the highest affinity capable of targeting the best predicted proteins. As a result, we identified 79 key druggable cancer-driving proteins with the highest ligandability, and 23 of them demonstrated unfavorable prognostic significance across 16 TCGA PanCancer types: CDKN2A, BCL10, ACVR1, CASP8, JAG1, TSC1, NBN, PREX2, PPP2R1A, DNM2, VAV1, ASXL1, TPR, HRAS, BUB1B, ATG7, MARK3, SETD2, CCNE1, MUTYH, CDKN2C, RB1, and SMARCA4. Moreover, we prioritized 11 clinically relevant drugs targeting these proteins. This strategy effectively predicts and prioritizes biomarkers, therapeutic targets, and drugs for in-depth studies in clinical trials. Scripts are available at https://github.com/muntisa/machine-learning-for-druggable-proteins .


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Aprendizado de Máquina , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Máquina de Vetores de Suporte , Reposicionamento de Medicamentos/métodos , Biologia Computacional/métodos , Multiômica
2.
Biology (Basel) ; 13(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056664

RESUMO

Horizontal gene transfer (HGT) is a widely acknowledged phenomenon in prokaryotes for generating genetic diversity. However, the impact of this process in eukaryotes, particularly interdomain HGT, is a topic of debate. Although there have been observed biases in interdomain HGT detection, little exploration has been conducted on the effects of imbalanced databases. In our study, we conducted experiments to assess how different databases affect the detection of interdomain HGT using proteomes from the Pezizomycotina fungal subphylum as our focus group. Our objective was to simulate the database imbalance commonly found in public biological databases, where bacterial and eukaryotic sequences are unevenly represented, and demonstrate that an increase in uploaded eukaryotic sequences leads to a decrease in predicted HGTs. For our experiments, four databases with varying proportions of eukaryotic sequences but consistent proportions of bacterial sequences were utilized. We observed a significant reduction in detected interdomain HGT candidates as the proportion of eukaryotes increased within the database. Our data suggest that the imbalance in databases bias the interdomain HGT detection and highlights challenges associated with confirming the presence of interdomain HGT among Pezizomycotina fungi and potentially other groups within Eukarya.

3.
J Cheminform ; 16(1): 27, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449058

RESUMO

For understanding a chemical compound's mechanism of action and its side effects, as well as for drug discovery, it is crucial to predict its possible protein targets. This study examines 15 developed target-centric models (TCM) employing different molecular descriptions and machine learning algorithms. They were contrasted with 17 third-party models implemented as web tools (WTCM). In both sets of models, consensus strategies were implemented as potential improvement over individual predictions. The findings indicate that TCM reach f1-score values greater than 0.8. Comparing both approaches, the best TCM achieves values of 0.75, 0.61, 0.25 and 0.38 for true positive/negative rates (TPR, TNR) and false negative/positive rates (FNR, FPR); outperforming the best WTCM. Moreover, the consensus strategy proves to have the most relevant results in the top 20 % of target profiles. TCM consensus reach TPR and FNR values of 0.98 and 0; while on WTCM reach values of 0.75 and 0.24. The implemented computational tool with the TCM and their consensus strategy at: https://bioquimio.udla.edu.ec/tidentification01/ . Scientific Contribution: We compare and discuss the performances of 17 public compound-target interaction prediction models and 15 new constructions. We also explore a compound-target interaction prioritization strategy using a consensus approach, and we analyzed the challenging involved in interactions modeling.

4.
J Cheminform ; 16(1): 9, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254200

RESUMO

The enantioselective Brønsted acid-catalyzed α-amidoalkylation reaction is a useful procedure is for the production of new drugs and natural products. In this context, Chiral Phosphoric Acid (CPA) catalysts are versatile catalysts for this type of reactions. The selection and design of new CPA catalysts for different enantioselective reactions has a dual interest because new CPA catalysts (tools) and chiral drugs or materials (products) can be obtained. However, this process is difficult and time consuming if approached from an experimental trial and error perspective. In this work, an Heuristic Perturbation-Theory and Machine Learning (HPTML) algorithm was used to seek a predictive model for CPA catalysts performance in terms of enantioselectivity in α-amidoalkylation reactions with R2 = 0.96 overall for training and validation series. It involved a Monte Carlo sampling of > 100,000 pairs of query and reference reactions. In addition, the computational and experimental investigation of a new set of intermolecular α-amidoalkylation reactions using BINOL-derived N-triflylphosphoramides as CPA catalysts is reported as a case of study. The model was implemented in a web server called MATEO: InterMolecular Amidoalkylation Theoretical Enantioselectivity Optimization, available online at: https://cptmltool.rnasa-imedir.com/CPTMLTools-Web/mateo . This new user-friendly online computational tool would enable sustainable optimization of reaction conditions that could lead to the design of new CPA catalysts along with new organic synthesis products.

5.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768951

RESUMO

The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Aprendizado de Máquina , Nanopartículas , Bases de Dados de Compostos Químicos , Bases de Dados de Produtos Farmacêuticos , Portadores de Fármacos/administração & dosagem , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Nanopartículas/administração & dosagem , Interface Usuário-Computador
6.
Front Pharmacol ; 12: 598925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716737

RESUMO

Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively. Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19. Results: We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal absorptive enterocytes of patients with several immunopathologies. Then, we performed fully connected deep neural networks to find the best multitask classification model to predict the activity of 10,672 drugs, obtaining several approved drugs, compounds under investigation, and experimental compounds with the highest area under the receiver operating characteristics. Conclusion: After being effectively analyzed in clinical trials, these drugs can be considered for treatment of severe COVID-19 patients. Scripts can be downloaded at https://github.com/muntisa/immuno-drug-repurposing-COVID-19.

7.
Bioorg Chem ; 109: 104745, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33640629

RESUMO

The developing of antibacterial resistance is becoming in crisis. In this sense, natural products play a fundamental role in the discovery of antibacterial agents with diverse mechanisms of action. Phytochemical investigation of Cissus incisa leaves led to isolation and characterization of the ceramides mixture (1): (8E)-2-(tritriacont-9-enoyl amino)-1,3,4-octadecanetriol-8-ene (1-I); (8E)-2-(2',3'-dihydroxyoctacosanoyl amino)-1,3,4-octadecanetriol-8-ene (1-II); (8E)-2-(2'-hydroxyheptacosanoyl amino)-1,3,4-octadecanetriol-8-ene (1-III); and (8E)-2-(-2'-hydroxynonacosanoyl amino)-1,3,4-octadecanetriol-8-ene (1-IV). Until now, this is the first report of the ceramides (1-I), (1-II), and (1-IV). The structures were elucidated using NMR and mass spectrometry analyses. Antibacterial activity of ceramides (1) and acetylated derivates (2) was evaluated against nine multidrug-resistant bacteria by Microdilution method. (1) showed the best results against Gram-negatives, mainly against carbapenems-resistant Acinetobacter baumannii with MIC = 50 µg/mL. Structure-activity analysis and molecular docking revealed interactions between plant ceramides with membrane proteins, and enzymes associated with biological membranes of Gram-negative bacteria, through hydrogen bonding of functional groups. Vesicular contents release assay showed the capacity of (1) to disturb membrane permeability detected by an increase of fluorescence probe over time. The membrane disruption is not caused for ceramides lytic action on cell membranes, according in vitro hemolyticactivity results. Combining SAR analysis, bioinformatics and biophysical techniques, and also experimental tests, it was possible to explain the antibacterial action of these natural ceramides.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Ceramidas/farmacologia , Cissus/química , Simulação de Acoplamento Molecular , Antibacterianos/química , Antibacterianos/isolamento & purificação , Ceramidas/química , Ceramidas/isolamento & purificação , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
8.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266378

RESUMO

Osteosarcoma is the most common type of primary malignant bone tumor. Although nowadays 5-year survival rates can reach up to 60-70%, acute complications and late effects of osteosarcoma therapy are two of the limiting factors in treatments. We developed a multi-objective algorithm for the repurposing of new anti-osteosarcoma drugs, based on the modeling of molecules with described activity for HOS, MG63, SAOS2, and U2OS cell lines in the ChEMBL database. Several predictive models were obtained for each cell line and those with accuracy greater than 0.8 were integrated into a desirability function for the final multi-objective model. An exhaustive exploration of model combinations was carried out to obtain the best multi-objective model in virtual screening. For the top 1% of the screened list, the final model showed a BEDROC = 0.562, EF = 27.6, and AUC = 0.653. The repositioning was performed on 2218 molecules described in DrugBank. Within the top-ranked drugs, we found: temsirolimus, paclitaxel, sirolimus, everolimus, and cabazitaxel, which are antineoplastic drugs described in clinical trials for cancer in general. Interestingly, we found several broad-spectrum antibiotics and antiretroviral agents. This powerful model predicts several drugs that should be studied in depth to find new chemotherapy regimens and to propose new strategies for osteosarcoma treatment.

9.
Molecules ; 25(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172092

RESUMO

Wuhan, China was the epicenter of the first zoonotic transmission of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) in December 2019 and it is the causative agent of the novel human coronavirus disease 2019 (COVID-19). Almost from the beginning of the COVID-19 outbreak several attempts were made to predict possible drugs capable of inhibiting the virus replication. In the present work a drug repurposing study is performed to identify potential SARS-CoV-2 protease inhibitors. We created a Quantitative Structure-Activity Relationship (QSAR) model based on a machine learning strategy using hundreds of inhibitor molecules of the main protease (Mpro) of the SARS-CoV coronavirus. The QSAR model was used for virtual screening of a large list of drugs from the DrugBank database. The best 20 candidates were then evaluated in-silico against the Mpro of SARS-CoV-2 by using docking and molecular dynamics analyses. Docking was done by using the Gold software, and the free energies of binding were predicted with the MM-PBSA method as implemented in AMBER. Our results indicate that levothyroxine, amobarbital and ABP-700 are the best potential inhibitors of the SARS-CoV-2 virus through their binding to the Mpro enzyme. Five other compounds showed also a negative but small free energy of binding: nikethamide, nifurtimox, rebimastat, apomine and rebastinib.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Amobarbital/farmacologia , Antivirais/química , Sítios de Ligação , Simulação por Computador , Humanos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Inibidores de Proteases/química , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Software , Termodinâmica , Tiroxina/farmacologia
10.
ACS Omega ; 5(42): 27211-27220, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134682

RESUMO

Sarcomas are a group of malignant neoplasms of connective tissue with a different etiology than carcinomas. The efforts to discover new drugs with antisarcoma activity have generated large datasets of multiple preclinical assays with different experimental conditions. For instance, the ChEMBL database contains outcomes of 37,919 different antisarcoma assays with 34,955 different chemical compounds. Furthermore, the experimental conditions reported in this dataset include 157 types of biological activity parameters, 36 drug targets, 43 cell lines, and 17 assay organisms. Considering this information, we propose combining perturbation theory (PT) principles with machine learning (ML) to develop a PTML model to predict antisarcoma compounds. PTML models use one function of reference that measures the probability of a drug being active under certain conditions (protein, cell line, organism, etc.). In this paper, we used a linear discriminant analysis and neural network to train and compare PT and non-PT models. All the explored models have an accuracy of 89.19-95.25% for training and 89.22-95.46% in validation sets. PTML-based strategies have similar accuracy but generate simplest models. Therefore, they may become a versatile tool for predicting antisarcoma compounds.

11.
Int Immunopharmacol ; 89(Pt A): 107026, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33045560

RESUMO

Interleukin 17 (IL-17) is a proinflammatory cytokine that acts as an immune checkpoint for several autoimmune diseases. Therapeutic neutralizing antibodies that target this cytokine have demonstrated clinical efficacy in psoriasis. However, biologics have limitations such as their high cost and their lack of oral bioavailability. Thus, it is necessary to expand the therapeutic options for this IL-17A/IL-17RA pathway, applying novel drug discovery methods to find effective small molecules. In this work, we combined biophysical and cell-based assays with structure-based docking to find novel ligands that target this pathway. First, a virtual screening of our chemical library of 60000 compounds was used to identify 67 potential ligands of IL-17A and IL-17RA. We developed a biophysical label-free binding assay to determine interactions with the extracellular domain of IL-17RA. Two molecules (CBG040591 and CBG060392) with quinazolinone and pyrrolidinedione chemical scaffolds, respectively, were confirmed as ligands of IL-17RA with micromolar affinity. The anti-inflammatory activity of these ligands as cytokine-release inhibitors was evaluated in human keratinocytes. Both ligands inhibited the release of chemokines mediated by IL-17A, with an IC50 of 20.9 ± 12.6 µM and 23.6 ± 11.8 µM for CCL20 and an IC50 of 26.7 ± 13.1 µM and 45.3 ± 13.0 µM for CXCL8. Hence, they blocked IL-17A proinflammatory activity, which is consistent with the inhibition of the signalling of the IL-17A receptor by ligand CBG060392. Therefore, we identified two novel immunopharmacological ligands targeting the IL-17A/IL-17RA pathway with antiinflammatory efficacy that can be promising tools for a drug discovery program for psoriasis.


Assuntos
Anti-Inflamatórios/farmacologia , Descoberta de Drogas , Interleucina-17/antagonistas & inibidores , Queratinócitos/efeitos dos fármacos , Psoríase/tratamento farmacológico , Receptores de Interleucina-17/antagonistas & inibidores , Quimiocina CCL20/metabolismo , Células HaCaT , Humanos , Interleucina-17/metabolismo , Interleucina-8/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Ligantes , Psoríase/imunologia , Psoríase/metabolismo , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas , Fluxo de Trabalho
12.
Curr Top Med Chem ; 20(25): 2326-2337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32938352

RESUMO

By combining Machine Learning (ML) methods with Perturbation Theory (PT), it is possible to develop predictive models for a variety of response targets. Such combination often known as Perturbation Theory Machine Learning (PTML) modeling comprises a set of techniques that can handle various physical, and chemical properties of different organisms, complex biological or material systems under multiple input conditions. In so doing, these techniques effectively integrate a manifold of diverse chemical and biological data into a single computational framework that can then be applied for screening lead chemicals as well as to find clues for improving the targeted response(s). PTML models have thus been extremely helpful in drug or material design efforts and found to be predictive and applicable across a broad space of systems. After a brief outline of the applied methodology, this work reviews the different uses of PTML in Medicinal Chemistry, as well as in other applications. Finally, we cover the development of software available nowadays for setting up PTML models from large datasets.


Assuntos
Bases de Dados de Compostos Químicos , Aprendizado de Máquina , Software , Química Farmacêutica , Modelos Moleculares
13.
Biology (Basel) ; 9(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751710

RESUMO

Drug-decorated nanoparticles (DDNPs) have important medical applications. The current work combined Perturbation Theory with Machine Learning and Information Fusion (PTMLIF). Thus, PTMLIF models were proposed to predict the probability of nanoparticle-compound/drug complexes having antimalarial activity (against Plasmodium). The aim is to save experimental resources and time by using a virtual screening for DDNPs. The raw data was obtained by the fusion of experimental data for nanoparticles with compound chemical assays from the ChEMBL database. The inputs for the eight Machine Learning classifiers were transformed features of drugs/compounds and nanoparticles as perturbations of molecular descriptors in specific experimental conditions (experiment-centered features). The resulting dataset contains 107 input features and 249,992 examples. The best classification model was provided by Random Forest, with 27 selected features of drugs/compounds and nanoparticles in all experimental conditions considered. The high performance of the model was demonstrated by the mean Area Under the Receiver Operating Characteristics (AUC) in a test subset with a value of 0.9921 ± 0.000244 (10-fold cross-validation). The results demonstrated the power of information fusion of the experimental-centered features of drugs/compounds and nanoparticles for the prediction of nanoparticle-compound antimalarial activity. The scripts and dataset for this project are available in the open GitHub repository.

14.
BMC Mol Cell Biol ; 21(1): 52, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640984

RESUMO

BACKGROUND: The main challenge in cancer research is the identification of different omic variables that present a prognostic value and personalised diagnosis for each tumour. The fact that the diagnosis is personalised opens the doors to the design and discovery of new specific treatments for each patient. In this context, this work offers new ways to reuse existing databases and work to create added value in research. Three published signatures with significante prognostic value in Colon Adenocarcinoma (COAD) were indentified. These signatures were combined in a new meta-signature and validated with main Machine Learning (ML) and conventional statistical techniques. In addition, a drug repurposing experiment was carried out through Molecular Docking (MD) methodology in order to identify new potential treatments in COAD. RESULTS: The prognostic potential of the signature was validated by means of ML algorithms and differential gene expression analysis. The results obtained supported the possibility that this meta-signature could harbor genes of interest for the prognosis and treatment of COAD. We studied drug repurposing following a molecular docking (MD) analysis, where the different protein data bank (PDB) structures of the genes of the meta-signature (in total 155) were confronted with 81 anti-cancer drugs approved by the FDA. We observed four interactions of interest: GLTP - Nilotinib, PTPRN - Venetoclax, VEGFA - Venetoclax and FABP6 - Abemaciclib. The FABP6 gene and its role within different metabolic pathways were studied in tumour and normal tissue and we observed the capability of the FABP6 gene to be a therapeutic target. Our in silico results showed a significant specificity of the union of the protein products of the FABP6 gene as well as the known action of Abemaciclib as an inhibitor of the CDK4/6 protein and therefore, of the cell cycle. CONCLUSIONS: The results of our ML and differential expression experiments have first shown the FABP6 gene as a possible new cancer biomarker due to its specificity in colonic tumour tissue and no expression in healthy adjacent tissue. Next, the MD analysis showed that the drug Abemaciclib characteristic affinity for the different protein structures of the FABP6 gene. Therefore, in silico experiments have shown a new opportunity that should be validated experimentally, thus helping to reduce the cost and speed of drug screening. For these reasons, we propose the validation of the drug Abemaciclib for the treatment of colon cancer.


Assuntos
Aminopiridinas/química , Aminopiridinas/uso terapêutico , Benzimidazóis/química , Benzimidazóis/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Algoritmos , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Bases de Dados de Proteínas , Reposicionamento de Medicamentos , Epistasia Genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Hormônios Gastrointestinais/genética , Hormônios Gastrointestinais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida
15.
Sci Rep ; 10(1): 8515, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444848

RESUMO

Breast cancer (BC) is a heterogeneous disease where genomic alterations, protein expression deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental determinants are involved. Due to the complexity of BC, the prediction of proteins involved in this disease is a trending topic in drug design. This work is proposing accurate prediction classifier for BC proteins using six sets of protein sequence descriptors and 13 machine-learning methods. After using a univariate feature selection for the mix of five descriptor families, the best classifier was obtained using multilayer perceptron method (artificial neural network) and 300 features. The performance of the model is demonstrated by the area under the receiver operating characteristics (AUROC) of 0.980 ± 0.0037, and accuracy of 0.936 ± 0.0056 (3-fold cross-validation). Regarding the prediction of 4,504 cancer-associated proteins using this model, the best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, CLPSL2, POLR2K, RPL38, AKT3, CDK3, RPS20, RASL11A and UBTD1; the best ranked metastasis driver proteins related to BC were S100A9, DDA1, TXN, PRNP, RPS27, S100A14, S100A7, MAPK1, AGR3 and NDUFA13; and the best ranked RNA-binding proteins related to BC were S100A9, TXN, RPS27L, RPS27, RPS27A, RPL38, MRPL54, PPAN, RPS20 and CSRP1. This powerful model predicts several BC-related proteins that should be deeply studied to find new biomarkers and better therapeutic targets. Scripts can be downloaded at https://github.com/muntisa/neural-networks-for-breast-cancer-proteins.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Aprendizado de Máquina , Redes Neurais de Computação , RNA/metabolismo , Neoplasias da Mama/secundário , Neoplasias da Mama/terapia , Feminino , Perfilação da Expressão Gênica , Humanos , Metástase Neoplásica
16.
Comput Biol Med ; 120: 103764, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32421658

RESUMO

Early detection is crucial to prevent the progression of Alzheimer's disease (AD). Thus, specialists can begin preventive treatment as soon as possible. They demand fast and precise assessment in the diagnosis of AD in the earliest and hardest to detect stages. The main objective of this work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI), which are not generally used. Sagittal MRIs from ADNI and OASIS data sets were employed. Experiments were conducted using Transfer Learning (TL) techniques in order to achieve more accurate results. There are two main conclusions to be drawn from this work: first, the damages related to AD and its stages can be distinguished in sagittal MRI and, second, the results obtained using DL models with sagittal MRIs are similar to the state-of-the-art, which uses the horizontal-plane MRI. Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages. This could pave the way for further research. Finally, one should bear in mind that in certain fields, obtaining the examples for a data set can be very expensive. This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
17.
Sci Rep ; 10(1): 5285, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210335

RESUMO

Breast cancer (BC) is the leading cause of cancer-related death among women and the most commonly diagnosed cancer worldwide. Although in recent years large-scale efforts have focused on identifying new therapeutic targets, a better understanding of BC molecular processes is required. Here we focused on elucidating the molecular hallmarks of BC heterogeneity and the oncogenic mutations involved in precision medicine that remains poorly defined. To fill this gap, we established an OncoOmics strategy that consists of analyzing genomic alterations, signaling pathways, protein-protein interactome network, protein expression, dependency maps in cell lines and patient-derived xenografts in 230 previously prioritized genes to reveal essential genes in breast cancer. As results, the OncoOmics BC essential genes were rationally filtered to 140. mRNA up-regulation was the most prevalent genomic alteration. The most altered signaling pathways were associated with basal-like and Her2-enriched molecular subtypes. RAC1, AKT1, CCND1, PIK3CA, ERBB2, CDH1, MAPK14, TP53, MAPK1, SRC, RAC3, BCL2, CTNNB1, EGFR, CDK2, GRB2, MED1 and GATA3 were essential genes in at least three OncoOmics approaches. Drugs with the highest amount of clinical trials in phases 3 and 4 were paclitaxel, docetaxel, trastuzumab, tamoxifen and doxorubicin. Lastly, we collected ~3,500 somatic and germline oncogenic variants associated with 50 essential genes, which in turn had therapeutic connectivity with 73 drugs. In conclusion, the OncoOmics strategy reveals essential genes capable of accelerating the development of targeted therapies for precision oncology.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Genes Essenciais , Mutação , Medicina de Precisão , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Prognóstico , Mapas de Interação de Proteínas , Proteoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033398

RESUMO

Osteosarcoma is the most common subtype of primary bone cancer, affecting mostly adolescents. In recent years, several studies have focused on elucidating the molecular mechanisms of this sarcoma; however, its molecular etiology has still not been determined with precision. Therefore, we applied a consensus strategy with the use of several bioinformatics tools to prioritize genes involved in its pathogenesis. Subsequently, we assessed the physical interactions of the previously selected genes and applied a communality analysis to this protein-protein interaction network. The consensus strategy prioritized a total list of 553 genes. Our enrichment analysis validates several studies that describe the signaling pathways PI3K/AKT and MAPK/ERK as pathogenic. The gene ontology described TP53 as a principal signal transducer that chiefly mediates processes associated with cell cycle and DNA damage response It is interesting to note that the communality analysis clusters several members involved in metastasis events, such as MMP2 and MMP9, and genes associated with DNA repair complexes, like ATM, ATR, CHEK1, and RAD51. In this study, we have identified well-known pathogenic genes for osteosarcoma and prioritized genes that need to be further explored.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Osteossarcoma/genética , Osteossarcoma/patologia , Biologia Computacional/métodos , Consenso , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética
19.
PeerJ ; 7: e7840, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649832

RESUMO

BACKGROUND: In developing countries, maternal undernutrition is the major intrauterine environmental factor contributing to fetal development and adverse pregnancy outcomes. Maternal nutrition restriction (MNR) in gestation has proven to impact overall growth, bone development, and proliferation and metabolism of mesenchymal stem cells in offspring. However, the efficient method for elucidation of fetal bone development performance through maternal bone metabolic biochemical markers remains elusive. METHODS: We adapted goats to elucidate fetal bone development state with maternal serum bone metabolic proteins under malnutrition conditions in mid- and late-gestation stages. We used the experimental data to create 72 datasets by mixing different input features such as one-hot encoding of experimental conditions, metabolic original data, experimental-centered features and experimental condition probabilities. Seven Machine Learning methods have been used to predict six fetal bone parameters (weight, length, and diameter of femur/humerus). RESULTS: The results indicated that MNR influences fetal bone development (femur and humerus) and fetal bone metabolic protein levels (C-terminal telopeptides of collagen I, CTx, in middle-gestation and N-terminal telopeptides of collagen I, NTx, in late-gestation), and maternal bone metabolites (low bone alkaline phosphatase, BALP, in middle-gestation and high BALP in late-gestation). The results show the importance of experimental conditions (ECs) encoding by mixing the information with the serum metabolic data. The best classification models obtained for femur weight (Fw) and length (FI), and humerus weight (Hw) are Support Vector Machines classifiers with the leave-one-out cross-validation accuracy of 1. The rest of the accuracies are 0.98, 0.946 and 0.696 for the diameter of femur (Fd), diameter and length of humerus (Hd, Hl), respectively. With the feature importance analysis, the moving averages mixed ECs are generally more important for the majority of the models. The moving average of parathyroid hormone (PTH) within nutritional conditions (MA-PTH-experim) is important for Fd, Hd and Hl prediction models but its removal for enhancing the Fw, Fl and Hw model performance. Further, using one feature models, it is possible to obtain even more accurate models compared with the feature importance analysis models. In conclusion, the machine learning is an efficient method to confirm the important role of PTH and BALP mixed with nutritional conditions for fetal bone growth performance of goats. All the Python scripts including results and comments are available into an open repository at https://gitlab.com/muntisa/goat-bones-machine-learning.

20.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491969

RESUMO

In this work, we improved a previous model used for the prediction of proteomes as new B-cell epitopes in vaccine design. The predicted epitope activity of a queried peptide is based on its sequence, a known reference epitope sequence under specific experimental conditions. The peptide sequences were transformed into molecular descriptors of sequence recurrence networks and were mixed under experimental conditions. The new models were generated using 709,100 instances of pair descriptors for query and reference peptide sequences. Using perturbations of the initial descriptors under sequence or assay conditions, 10 transformed features were used as inputs for seven Machine Learning methods. The best model was obtained with random forest classifiers with an Area Under the Receiver Operating Characteristics (AUROC) of 0.981 ± 0.0005 for the external validation series (five-fold cross-validation). The database included information about 83,683 peptides sequences, 1448 epitope organisms, 323 host organisms, 15 types of in vivo processes, 28 experimental techniques, and 505 adjuvant additives. The current model could improve the in silico predictions of epitopes for vaccine design. The script and results are available as a free repository.


Assuntos
Mapeamento de Epitopos , Aprendizado de Máquina , Peptídeos/imunologia , Sequência de Aminoácidos , Humanos , Peptídeos/química , Curva ROC , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA