Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(9): e0065624, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39136460

RESUMO

The multifunctional tegument protein pUL21 of HSV-2 is phosphorylated in infected cells. We have identified two residues in the unstructured linker region of pUL21, serine 251 and serine 253, as phosphorylation sites. Both phosphorylation sites are absent in HSV-1 pUL21, which likely explains why phosphorylated pUL21 was not detected in cells infected with HSV-1. Cells infected with HSV-2 strain 186 viruses deficient in pUL21 phosphorylation exhibited reductions in both cell-cell spread of virus infection and virus replication. Defects in secondary envelopment of cytoplasmic nucleocapsids were also observed in cells infected with viruses deficient in pUL21 phosphorylation as well as in cells infected with multiple strains of HSV-2 and HSV-1 deleted for pUL21. These results confirm a role for HSV pUL21 in the secondary envelopment of cytoplasmic nucleocapsids and indicate that phosphorylation of HSV-2 pUL21 is required for this activity. Phosphorylation of pUL21 was substantially reduced in cells infected with HSV-2 strain 186 mutants lacking the viral serine/threonine kinase pUL13, indicating a requirement for pUL13 in pUL21 phosphorylation. IMPORTANCE: It is well known that post-translational modification of proteins by phosphorylation can regulate protein function. Here, we determined that phosphorylation of the multifunctional HSV-2 tegument protein pUL21 requires the viral serine/threonine kinase pUL13. In addition, we identified serine residues within HSV-2 pUL21 that can be phosphorylated. Phenotypic analysis of mutant HSV-2 strains with deficiencies in pUL21 phosphorylation revealed reductions in both cell-cell spread of virus infection and virus replication. Deficiencies in pUL21 phosphorylation also compromised the secondary envelopment of cytoplasmic nucleocapsids, a critical final step in the maturation of all herpes virions. Unlike HSV-2 pUL21, phosphorylation of HSV-1 pUL21 was not detected. This fundamental difference between HSV-2 and HSV-1 may underlie our previous observations that the requirements for pUL21 differ between HSV species.


Assuntos
Herpesvirus Humano 2 , Nucleocapsídeo , Replicação Viral , Herpesvirus Humano 2/metabolismo , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/fisiologia , Fosforilação , Animais , Chlorocebus aethiops , Humanos , Células Vero , Nucleocapsídeo/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Citoplasma/metabolismo , Citoplasma/virologia , Linhagem Celular , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , Montagem de Vírus , Herpes Simples/virologia , Herpes Simples/metabolismo
2.
Can J Neurol Sci ; : 1-10, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453685

RESUMO

BACKGROUND: Contrast-induced encephalopathy (CIE) is an adverse event associated with diagnostic and therapeutic endovascular procedures. Decades of animal and human research support a mechanistic role for pathological blood-brain barrier dysfunction (BBBd). Here, we describe an institutional case series and review the literature supporting a mechanistic role for BBBd in CIE. METHODS: A literature review was conducted by searching MEDLINE, Web of Science, Embase, CINAHL and Cochrane databases from inception to January 31, 2022. We searched our institutional neurovascular database for cases of CIE following endovascular treatment of cerebrovascular disease during a 6-month period. Informed consent was obtained in all cases. RESULTS: Review of the literature revealed risk factors for BBBd and CIE, including microvascular disease, pathological neuroinflammation, severe procedural hypertension, iodinated contrast load and altered cerebral blood flow dynamics. In our institutional series, 6 of 52 (11.5%) of patients undergoing therapeutic neuroendovascular procedures developed CIE during the study period. Four patients were treated for ischemic stroke and two patients for recurrent cerebral aneurysms. Mechanical stenting or thrombectomy were utilized in all cases. CONCLUSION: In this institutional case series and literature review of animal and human data, we identified numerous shared risk factors for CIE and BBBd, including microvascular disease, increased procedure length, large contrast volumes, severe intraoperative hypertension and use of mechanical devices that may induce iatrogenic endothelial injury.

3.
Sci Adv ; 9(50): eadj2417, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091390

RESUMO

Cortical spreading depolarization (CSD) is a promising target for neuroprotective therapy in traumatic brain injury (TBI). We explored the effect of NMDA receptor antagonism on electrically triggered CSDs in healthy and brain-injured animals. Rats received either one moderate or four daily repetitive mild closed head impacts (rmTBI). Ninety-three animals underwent craniectomy with electrocorticographic (ECoG) and local blood flow monitoring. In brain-injured animals, ketamine or memantine inhibited CSDs in 44 to 88% and 50 to 67% of cases, respectively. Near-DC/AC-ECoG amplitude was reduced by 44 to 75% and 52 to 67%, and duration by 39 to 87% and 61 to 78%, respectively. Daily memantine significantly reduced spreading depression and oligemia following CSD. Animals (N = 31) were randomized to either memantine (10 mg/kg) or saline with daily neurobehavioral testing. Memantine-treated animals had higher neurological scores. We demonstrate that memantine improved neurovascular function following CSD in sham and brain-injured animals. Memantine also prevented neurological decline in a blinded, preclinical randomized rmTBI trial.


Assuntos
Lesões Encefálicas Traumáticas , Memantina , Ratos , Animais , Memantina/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo/metabolismo , Eletrocorticografia , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Neurobiol Dis ; 186: 106269, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619791

RESUMO

Traumatic brain injury (TBI) involves an acute injury (primary damage), which may evolve in the hours to days after impact (secondary damage). Seizures and cortical spreading depolarization (CSD) are metabolically demanding processes that may worsen secondary brain injury. Metabolic stress has been associated with mitochondrial dysfunction, including impaired calcium homeostasis, reduced ATP production, and elevated ROS production. However, the association between mitochondrial impairment and vascular function after TBI is poorly understood. Here, we explored this association using a rodent closed head injury model. CSD is associated with neurobehavioral decline after TBI. Craniotomy was performed to elicit CSD via electrical stimulation or to induce seizures via 4-aminopyridine application. We measured vascular dysfunction following CSDs and seizures in TBI animals using laser doppler flowmetry. We observed a more profound reduction in local cortical blood flow in TBI animals compared to healthy controls. CSD resulted in mitochondrial dysfunction and pathological signs of increased oxidative stress adjacent to the vasculature. We explored these findings further using electron microscopy and found that TBI and CSDs resulted in vascular morphological changes and mitochondrial cristae damage in astrocytes, pericytes and endothelial cells. Overall, we provide evidence that CSDs induce mitochondrial dysfunction, impaired cortical blood flow, and neurobehavioral deficits in the setting of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Acoplamento Neurovascular , Animais , Células Endoteliais , Lesões Encefálicas Traumáticas/complicações
5.
PLoS Pathog ; 17(8): e1009679, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424922

RESUMO

It is well established that the herpesvirus nuclear egress complex (NEC) has an intrinsic ability to deform membranes. During viral infection, the membrane-deformation activity of the NEC must be precisely regulated to ensure efficient nuclear egress of capsids. One viral protein known to regulate herpes simplex virus type 2 (HSV-2) NEC activity is the tegument protein pUL21. Cells infected with an HSV-2 mutant lacking pUL21 (ΔUL21) produced a slower migrating species of the viral serine/threonine kinase pUs3 that was shown to be a hyperphosphorylated form of the enzyme. Investigation of the pUs3 substrate profile in ΔUL21-infected cells revealed a prominent band with a molecular weight consistent with that of the NEC components pUL31 and pUL34. Phosphatase sensitivity and retarded mobility in phos-tag SDS-PAGE confirmed that both pUL31 and pUL34 were hyperphosphorylated by pUs3 in the absence of pUL21. To gain insight into the consequences of increased phosphorylation of NEC components, the architecture of the nuclear envelope in cells producing the HSV-2 NEC in the presence or absence of pUs3 was examined. In cells with robust NEC production, invaginations of the inner nuclear membrane were observed that contained budded vesicles of uniform size. By contrast, nuclear envelope deformations protruding outwards from the nucleus, were observed when pUs3 was included in transfections with the HSV-2 NEC. Finally, when pUL21 was included in transfections with the HSV-2 NEC and pUs3, decreased phosphorylation of NEC components was observed in comparison to transfections lacking pUL21. These results demonstrate that pUL21 influences the phosphorylation status of pUs3 and the HSV-2 NEC and that this has consequences for the architecture of the nuclear envelope.


Assuntos
Herpes Simples/patologia , Herpesvirus Humano 2/fisiologia , Membrana Nuclear/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus , Animais , Capsídeo/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Herpes Simples/metabolismo , Herpes Simples/virologia , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/virologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Células Vero , Proteínas Virais/genética , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA