Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Radiol Phys Technol ; 14(3): 288-296, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34152509

RESUMO

Latest digital radiographic technology permits dynamic chest radiography during the cardiac beating and/or respiration, which allows for real-time observation of the lungs. This study aimed to assess the capacity of dynamic flat-panel detector (FPD) imaging without the use of contrast media to estimate cardiovascular parameters based on image parameters of a porcine model under fluid loading. Three domestic pigs were intubated, and mechanical ventilation was provided using a ventilator under anesthesia. A porcine model involving circulatory changes induced by fluid loading (fluid infusion/blood removal) was developed. Sequential chest radiographs of the pigs were obtained using a dynamic FPD system within the first 5 min after fluid loading. Image parameters such as the size of the heart shadow and mean pixel values in the lungs were measured, and correlations between fluid loading and cardiovascular parameters (blood pressure [BP], cardiac output [CO], central venous pressure [CVP], and pulmonary arterial pressure [PAP]) were analyzed based on freedom-adjusted coefficients of determination (Rf2). Fluid loading was correlated with radiographic lung density and the size of the heart shadow. Radiographic lung density was correlated with the left and right heart system-related parameters BP, CO, CVP, and PAP. The size of the heart shadow correlated with the left heart system-related parameters CO and BP. Dynamic FPD imaging allows for the relative evaluation of cardiovascular parameters based on image parameters. This diagnostic method provides radiographic image information and estimates relative circulatory parameters.


Assuntos
Pneumopatias , Animais , Coração , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Intensificação de Imagem Radiográfica , Radiografia , Respiração , Suínos
2.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233740

RESUMO

Pre-mRNA splicing is an essential mechanism for ensuring integrity of the transcriptome in eukaryotes. Therefore, splicing deficiency might cause a decrease in functional proteins and the production of nonfunctional, aberrant proteins. To prevent the production of such aberrant proteins, eukaryotic cells have several mRNA quality control mechanisms. In addition to the known mechanisms, we previously found that transcription elongation is attenuated to prevent the accumulation of pre-mRNA under splicing-deficient conditions. However, the detailed molecular mechanism behind the defect in transcription elongation remains unknown. Here, we showed that the RNA binding protein Rbm38 reduced the transcription elongation defect of the SMEK2 gene caused by splicing deficiency. This reduction was shown to require the N- and C-terminal regions of Rbm38, along with an important role being played by the RNA-recognition motif of Rbm38. These findings advance our understanding of the molecular mechanism of the transcription elongation defect caused by splicing deficiency.


Assuntos
Fosfoproteínas Fosfatases/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Mutação , Ligação Proteica
3.
Acad Radiol ; 26(10): 1301-1308, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30683613

RESUMO

RATIONALE AND OBJECTIVES: To assess the capacity of dynamic flat-panel detector imaging without the use of contrast media to detect pulmonary embolism (PE) based on temporal changes in radiographic lung density during cardiac beating. MATERIALS AND METHODS: Sequential chest radiographs of six pigs were acquired using a dynamic flat-panel detector system. A porcine model of PE was developed, and temporal changes in pixel values in the imaged lungs were analyzed during a whole cardiac cycle. Mean differences in temporal changes in pixel values between affected and unaffected lobes were assessed using the paired t test. To facilitate visual evaluation, temporal changes in pixel values were depicted using a colorimetric scale and were compared to the findings of contrast-enhanced images. RESULTS: Affected lobes exhibited a mean reduction of 49.6% in temporal changes in pixel values compared to unaffected lobes within the same animals, and a mean reduction of 41.3% compared to that before vessel blockage in the same lobe. All unaffected lobes exhibited significantly-increased changes in pixel values after vessel blockage (p < 0.01). In all PE models, there were color-deficient areas with shapes and locations that matched well with the perfusion defects confirmed in the corresponding contrast-enhanced images. CONCLUSION: Dynamic chest radiography enables the detection of perfusion defects in the lobe unit based on temporal changes in image density, even without the use of contrast media. Quantification and visualization techniques provide a better understanding of the circulation-induced changes depicted in dynamic chest radiographs.


Assuntos
Pulmão/diagnóstico por imagem , Embolia Pulmonar/diagnóstico por imagem , Radiografia/métodos , Animais , Modelos Animais de Doenças , Coração/fisiologia , Humanos , Estudos Prospectivos , Suínos
4.
Invest Radiol ; 53(7): 417-423, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29505487

RESUMO

OBJECTIVES: The aims of this study were to address the relationship between respiratory changes in image density of the lungs and tidal volume, to compare the changes between affected and unaffected lobes, and to apply this new technique to the diagnosis of atelectasis. MATERIALS AND METHODS: Our animal care committee approved this prospective animal study. Sequential chest radiographs of 4 pigs were obtained under respiratory control with a ventilator using a dynamic flat-panel detector system. Porcine models of atelectasis were developed, and the correlation between the tidal volume and changes in pixel values measured in the lungs were analyzed. The mean difference in respiratory changes in pixel values between both lungs was tested using paired t tests. To facilitate visual evaluation, respiratory changes in pixel values were visualized in the form of a color display, that is, as changes in color scale. RESULTS: Average pixel values in the lung regions changed according to forced respiration. High linearity was observed between changes in pixel values and tidal volume in the normal models (r = 0.99). Areas of atelectasis displayed significantly reduced changes in pixel values (P < 0.05). Of all atelectasis models with air trapping and air inflow restriction, 92.7% (19/20) were visualized as color-defective or color-marked areas on functional images, respectively. CONCLUSION: Dynamic chest radiography allows for the relative evaluation of tidal volume, the detection of ventilation defects in the lobe unit, and a differential diagnosis between air trapping and air inflow restriction, based on respiratory changes in image density of the lungs, even without the use of contrast media.


Assuntos
Pneumopatias/diagnóstico por imagem , Pneumopatias/fisiopatologia , Radiografia/métodos , Respiração , Animais , Modelos Animais de Doenças , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Estudos Prospectivos , Radiografia/instrumentação , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA