Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(2): 462-468, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36638061

RESUMO

Spatiotemporal pattern formation is dynamic self-organization widely observed in nature and drives various functions. Among these functions, chirality plays a central role. The relationship between dynamic self-organization and chirality has been an open question; therefore, the production of chiral nanomaterials by dynamic self-organization has not been achieved. Here, we show that the confinement of a two-dimensional spatiotemporal micropattern via the electrodeposition of a binary Cu alloy into a nanopore induces mirror symmetry breaking to produce a helical nanostructure of the noble-metal component although it is still not yet possible to control the handedness at this stage. This result suggests that spatiotemporal symmetry breaking functions as a mirror symmetry breaking if cylindrical pores are given as the boundary condition. This study can be a model system of how spatiotemporal symmetry breaking plays a role in mirror symmetry breaking, and it proposes a new approach to producing helical nanomaterials through dynamic self-organization.

2.
J Phys Chem Lett ; 13(13): 2956-2962, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343696

RESUMO

Silicon carbide (SiC) is a promising material for wide applications due to its excellent material properties including high physical and chemical stability as well as great electronic properties of a wide bandgap. The high stability, however, makes its surface processing difficult. Especially, electrochemical processing is not well-established because of low electrochemical reactivity. Here, we show that selective phonon excitation by a mid-infrared free electron laser (MIR-FEL) enhances the anodic reactions. The selective excitation of two different vibration modes of the Si-C bond induces two different stacking faults, which act as a current path. As an application, we discovered that MIR-FEL irradiation enables Pt electroless deposition. This work reveals the interactions among phonons, lattice defects, and electrochemical reactions, encouraging further development of not only electrochemical surface processing but also a new application of MIR-FEL.

3.
Phys Chem Chem Phys ; 23(1): 449-456, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33320154

RESUMO

We investigated the ligand dependence of the proton conduction of hydronium solvate ionic liquids (ILs), consisting of a hydronium ion (H3O+), polyether ligands, and a bis[(trifluoromethyl)sulfonyl]amide anion (Tf2N-; Tf = CF3SO2). The ligands were changed from previously reported 18-crown-6 (18C6) to other cyclic or acyclic polyethers, namely, dicyclohexano-18-crown-6 (Dh18C6), benzo-18-crown-6 (B18C6) and pentaethylene glycol dimethyl ether (G5). Pulsed-field gradient spin echo nuclear magnetic resonance results revealed that the protons of H3O+ move faster than those of cyclic 18C6-based ligands but as fast as those of acyclic G5 ligands. Based on these results and density functional theory calculations, we propose that the coordination of a cyclic ether ligand to the H3O+ ion is essential for fast proton conduction in hydronium solvate ILs. Our results attract special interest for many electro- and bio-chemical applications such as electrolyte systems for fuel cells and artificial ion channels for biological cells.

4.
ACS Omega ; 5(41): 26894-26901, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33111015

RESUMO

The ion enrichment behavior due to surface-induced phase separation and the concomitant phase transition of electrolyte solutions between a liquid and a solid confined within nanopores of porous silicon is examined using concentrated aqueous solutions. We performed open-circuit potential measurements and differential scanning calorimetry (DSC) while varying the concentration of aqueous tetraethylammonium chloride (TEACl) solution. Open-circuit potential measurements revealed that the local OH- concentration within the nanopores increases as the bulk TEACl concentration increases. DSC measurements indicated that TEA+ cations are enriched within the nanopores and an extremely high concentration of TEA+ remarkably increases the local OH- concentration. This increase in the local pH should realize the selective precipitation of metal hydroxides within the nanopores. However, such precipitation was not observed in our investigations using aqueous solutions containing zinc cations. The experimental results suggest that ionic species within the nanopores of porous silicon are more stable than those in a bulk solution due to the formation of ion pairs with enhanced stability as well as kinetic factors that increase the activation energy for precipitation.

5.
ACS Appl Mater Interfaces ; 12(38): 43289-43298, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32870640

RESUMO

A concentrated aluminum chloride (AlCl3)-diglyme (G2) electrolyte is used to prepare hard and corrosion-resistant aluminum (Al) electrodeposited films. The Al electrodeposits obtained from the electrolyte with an AlCl3/G2 molar ratio x = 0.4 showed a void-free microstructure composed of spherical particles, in stark contrast to flake-like morphologies with micro-voids for lower x. Neutral complexes rarely exist in the x = 0.4 electrolyte, resulting in a relatively high conductivity despite the high concentration and high viscosity. Nanoindentation measurements for the Al deposits with >99% purity revealed that the nanohardness was 2.86 GPa, three times higher than that for Al materials produced through electrodeposition from a well-known ionic liquid bath or through severe plastic deformation. Additionally, the void-free Al deposits had a <100> preferential crystal orientation, which accounted for better resistance to free corrosion and pitting corrosion. Discussions about the compact microstructure and <100> crystal orientation of deposits obtained only from the x = 0.4 concentrated electrolyte are also presented.

6.
IUCrdata ; 5(Pt 2): x200162, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36340829

RESUMO

The structure of the title compound, H3O+·C2F6NO4S2 -·C12H24O6 or [H3O+·C12H24O6][N(SO2CF3)2 -], which is an ionic liquid with a melting point of 341-343 K, has been determined at 113 K. The asymmetric unit consists of two crystallographically independent 18-crown-6 mol-ecules, two hydro-nium ions and two bis-(tri-fluoro-methane-sulfon-yl)amide anions; each 18-crown-6 mol-ecule complexes with a hydro-nium ion. In one 18-crown-6 mol-ecule, a part of the ring exhibits conformational disorder over two sets of sites with an occupancy ratio of 0.533 (13):0.467 (13). One hydro-nium ion is complexed with the ordered 18-crown-6 mol-ecule via O-H⋯O hydrogen bonds with H2OH⋯OC distances of 1.90 (6)-2.19 (7) Å, and the other hydro-nium ion with the disordered crown mol-ecule with distances of 1.85 (6)-2.36 (6) Å. The hydro-nium ions are also linked to the anions via O-H⋯F hydrogen bonds. The crystal studied was found to be a racemic twin with a component ratio of 0.55 (13):0.45 (13).

7.
ACS Appl Mater Interfaces ; 11(51): 48604-48611, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31794191

RESUMO

Nanometric chiral objects such as twisted or helical nanoribbons represent a new class of objects having important potential in a large panel of applications, taking advantage, for example, of electromechanical or optical chirality, local chiral environment for catalysis, and chiral recognition. Supramolecular chemistry has played a central role in the production of such structures through either chiral macromolecules/foldamers or the self-assembly of chiral molecules; the latter can also be used as templates for the sol-gel transcription to silica materials, offering them polymorphisms with further structural stability. Here, we report a totally different and dynamic approach to produce helical mesostructures. This study focuses on helical nanopores that are spontaneously formed in the platinum-assisted chemical etching of silicon by dynamic self-organization under a nonequilibrium state. The symmetry breaking of a helical nanopore formation is achieved by the spatial symmetry breaking of a spatiotemporal pattern at the nanoscale and without incorporation of chiral molecules. Rotational motion of the platinum nanocatalyst, which is regarded as a spatiotemporal pattern at the etching frontier (the platinum/silicon interface), induces precession movement of the nanocatalyst, and movement of the catalyst during etching forms helical nanopores in the silicon. We consider that this study is an important milestone to understand the close relation between spatiotemporal pattern formation and the dynamic emergence of symmetry breaking in chemical reactions.

8.
Phys Chem Chem Phys ; 19(25): 16323-16328, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28425518

RESUMO

Manipulating the local pH within nanoconfinement is essential in nanofluidics technology and its applications. Since the conventional strategy utilizes the overlapping of an electric double layer formed for charge compensation by protons near a negatively charged pore-wall surface, pH variation within a pore is limited to the acidic side. To achieve the variation at the alkaline side, we developed a system comprising a hydrophobic pore-wall surface and aqueous solution containing hydrophobic cations. Beyond a threshold cation concentration, a nanopore is filled with the second phase where the cations are remarkably enriched due to surface-induced phase transition (SIFT) originating from the hydrophobic effect. It is accompanied by the enrichment of coexisting anions. We experimentally show that pH in the second phase is much higher than in the bulk solution. Electrochemical measurements strongly suggest that the pH value can be increased from 4.8 to 10.7 within a 10 nm nanopore in the most significant case. This is ascribed to the enrichment of hydroxide anions. We argue that the extent and rate of pH variation are controlled as desired.

9.
Chemphyschem ; 16(8): 1613-8, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25765511

RESUMO

Self-organization plays an imperative role in recent materials science. Highly tunable, periodic structures based on dynamic self-organization at micrometer scales have proven difficult to design, but are desired for the further development of micropatterning. In the present study, we report a microgroove array that spontaneously forms on a p-type silicon surface during its electrodissolution. Our detailed experimental results suggest that the instability can be classified as Turing instability. The characteristic scale of the Turing-type pattern is small compared to self-organized patterns caused by the Turing instabilities reported so far. The mechanism for the miniaturization of self-organized patterns is strongly related to the semiconducting property of silicon electrodes as well as the dynamics of their surface chemistry.

10.
J Chem Phys ; 141(7): 074701, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25149800

RESUMO

In an earlier work [K. Fukami et al., J. Chem. Phys. 138, 094702 (2013)], we reported a transition phenomenon observed for platinum complex anions in our platinum electrodeposition experiment using nanoporous silicon. The pore wall surface of the silicon electrode was made hydrophobic by covering it with organic molecules. The anions are only weakly hydrated due to their large size and excluded from the bulk aqueous solution to the hydrophobic surface. When the anion concentration in the bulk was gradually increased, at a threshold the deposition behavior exhibited a sudden change, leading to drastic acceleration of the electrochemical deposition. It was shown that this change originates from a surface-induced phase transition: The space within a nanopore is abruptly filled with the second phase in which the anion concentration is orders of magnitude higher than that in the bulk. Here we examine how the platinum electrodeposition behavior is affected by the cation species coexisting with the anions. We compare the experimental results obtained using three different cation species: K(+), (CH3)4N(+), and (C2H5)4N(+). One of the cation species coexists with platinum complex anions [PtCl4](2-). It is shown that the threshold concentration, beyond which the electrochemical deposition within nanopores is drastically accelerated, is considerably dependent on the cation species. The threshold concentration becomes lower as the cation size increases. Our theoretical analysis suggests that not only the anions but also the cations are remarkably enriched in the second phase. The remarkable enrichment of the anions alone would give rise to the energetic instability due to electrostatic repulsive interactions among the anions. We argue that the result obtained cannot be elucidated by the prevailing view based on classical electrochemistry. It is necessitated to consult a statistical-mechanical theory of confined aqueous solutions using a molecular model for water.

11.
J Colloid Interface Sci ; 411: 145-51, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24041547

RESUMO

The photochemical grafting of methyl groups onto an n-type Si(111) substrate was successfully achieved using a Grignard reagent. The preparation involved illuminating a hydrogen-terminated Si(111) that was immersed in a CH3MgBr-THF solution. The success was attributed to the ability of the n-type hydrogenated substrate to produce holes on its surface when illuminated. The rate of grafting methyl groups onto the silicon surface was higher when a larger illumination intensity or when a substrate with lower dopant concentration was used. In addition, the methylated layer has an atomically flat structure, has a hydrophobic surface, and has electron affinity that was lower than the bulk Si.

12.
J Colloid Interface Sci ; 382(1): 22-7, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22749525

RESUMO

Synthesis of ω-alkenyl-terminated silver nanoparticles (AgNPs) and then their immobilization on a hydrogen-terminated silicon surface in two-dimensional arrangement through covalent interaction are demonstrated. The thermal-induced hydrosilylation at mild conditions facilitate nanoparticles assembly through interaction between terminal alkenyl (CH(2)=CH-) groups of AgNPs and hydrogen-terminated silicon surface. The assembly of AgNPs on a silicon surface is characterized by FESEM and XPS. Adequate coating of 10-undecene-1-thiol (UDT) on AgNPs and mild temperature hydrosilylation impede the fusion or aggregation of nanoparticles, while they immobilized on a silicon surface, which is very crucial to preserve the discrete entities of nanoparticles. This elegant and facile approach provides stable monolayer of AgNPs with very good coverage area and promises potential to fabricate electronic devices and solar cells, where nanoparticles needs to be directly attached to the silicon surface without an interfacial oxide thin film.


Assuntos
Alcenos/química , Hidrogênio/química , Nanopartículas/química , Silício/química , Prata/química , Nanopartículas/ultraestrutura , Nanotecnologia , Propriedades de Superfície , Temperatura
13.
Langmuir ; 28(20): 7579-84, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22564105

RESUMO

We have fabricated gold nanoparticle (AuNP) arrays on indium-tin oxide (ITO) substrates in a nearly one-dimensional fashion. AuNPs were site-selectively immobilized on ITO of which the surface had been patterned by a nanolithography process based on scanning probe microscopy. The fabricated nanoscale lines covered with aminosilane self-assembled monolayer served as chemisorption sites for citrate-stabilized AuNPs of 20 nm in diameter, accordingly, AuNP nanolines with a thickness of single nanoparticle diameter were spontaneously assembled on the lines. In this 1D array, the AuNPs were almost separated from each other due to the electrostatic repulsion between their negatively charged surface layers. Furthermore, a reorganization process of the immobilized AuNP arrays has been successfully demonstrated by replacing each AuNP's surface layer from citric acid to dodecanethiol. By this process, the AuNPs lost their electrostatic repulsion and became hydrophobic so as to be attracted to each other through hydrophobic interaction, resulting in reorganization of the AuNP array. By repeating the deposition and reorganization cycle, AuNPs were more densely packed. The optical absorption peak of the arrays due to their plasmonic resonance was found to shift from 526 to 590 nm in wavelength with repeating cycles, indicating that the resonance manner was changed from the single nanoparticle mode to the multiple particle mode with interparticle coupling.

14.
Chem Commun (Camb) ; 47(31): 8841-3, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21738920

RESUMO

The molecular density of an aminosilane self-assembled monolayer formed from N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AEAPS) by a vapor phase method has been estimated to be about 3 AEAPS molecules per nm(2) based on chemical labeling, optical absorption spectroscopy and X-ray photoelectron spectroscopy.


Assuntos
Diaminas/química , Gases/química , Silanos/química , Espectroscopia Fotoeletrônica , Ácido Trinitrobenzenossulfônico/química
15.
J Colloid Interface Sci ; 361(1): 259-69, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21696751

RESUMO

Electrochemically active self-assembled monolayers (SAM) have been successfully fabricated with atomic-scale uniformity on a silicon (Si)(111) surface by immobilizing vinylferrocene (VFC) molecules through Si-C covalent bonds. The reaction of VFC with the hydrogen-terminated Si (H-Si)(111) surface was photochemically promoted by irradiation of visible light on a H-Si(111) substrate immersed in n-decane solution of VFC. We found that aggregation and polymerization of VFC was avoided when n-decane was used as a solvent. Voltammetric quantification revealed that the surface density of ferrocenyl groups was 1.4×10(-10) mol cm(-2), i.e., 11% in substitution rate of Si-H bond. VFC-SAMs were then formed by the optimized preparation method on n-type and p-type Si wafers. VFC-SAM on n-type Si showed positive photo-responsivity, while VFC-SAM on p-type Si showed negative photo-responsivity.

16.
Langmuir ; 25(10): 5516-25, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19334747

RESUMO

For practical application of self-assembled monolayers (SAMs), knowledge of their chemical durability in acidic or basic solutions is important. In the present work, a series of SAMs directly immobilized on a silicon (111) surface through Si-C or Si-O-C covalent bonds without a native oxide layer were prepared by thermally activated chemical reactions of a hydrogen-terminated Si(111) substrate with linear molecules, i.e., 1-hexadecene, 1-hexadecanol, 1-dodecanol, and n-dodecanal, to investigate the durability of the SAMs to HF and Na2CO3 solutions. While grazing incidence X-ray reflectivity measurements showed that all the as-prepared SAMs had almost the same film density and molecular coverage, keeping the original step and terrace structure of Si(111) as is observed by atomic force microscopy, they gave different degradation behaviors, i.e., pitting and concomitant surface roughening in both solutions. 1-hexadecene SAM was stable against immersion in both solutions, while the other SAMs were damaged within 60 min, most likely due to the difference in chemical bonding modes at the SAM/Si interface, i.e., Si-C and Si-O-C.

17.
Langmuir ; 24(20): 12077-84, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18823091

RESUMO

Photopatterning of a hexadecyl (HD) monolayer has been demonstrated using vacuum ultraviolet (VUV; lambda = 172 nm) light under controlled vacuum pressure with the objective of minimizing the pattern dimension. X-ray photoelectron spectroscopy (XPS) and lateral force microscopy (LFM) studies reveal that photodegradation of the HD monolayer not only is limited to the regions exposed to VUV but also spreads under the masked regions. The strong oxidants generated by VUV irradiation to atmospheric oxygen and water vapor diffuse toward the masked regions through the nanoscopic channels and photodissociate the monolayer under the masked area, near the photomask apertures, resulting in broadening of the photopattern. Such broadening decreases with decreased vacuum pressure inside the VUV chamber, associated with a decrease of oxidant concentration and reduction of their diffusion. Gold nanoparticles (AuNPs) were immobilized on the VUV patterned features to probe the dimension of the chemically active pattern. Field emission electron microscopy reveals the construction of 565 nm wide pattern features at a vacuum pressure of 10 Pa. This pattern widens to 1,030 nm at 10 (4) Pa using the same size apertures (500 nm) as printed on the photomask. This study provides insight for fabricating submicron patterns with high reproducibility and its exploitation for different applications, which includes the patterning of nanoparticles, biopolymers, and other nano-objects at submicron dimensions.

18.
Langmuir ; 24(15): 7785-92, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18572958

RESUMO

Ultrafine monodisperse gold nanoparticles (AuNPs) were synthesized by an elegant sputtering of gold onto 1- n-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF(6)) ionic liquid. It was found that the BMI-PF(6) supramolecular aggregates were loosely coordinated to the gold nanoparticles and were replaceable with thiol molecules. The self-assembly of BMI-PF(6)-stabilized AuNPs onto a (3-mercaptopropyl)trimethoxysilane (MPS)-functionalized silicon surface in 2D arrays, followed by dodecanethiol (DDT) treatment, have been demonstrated using X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and contact angle measurements. DDT treatment of tethered AuNPs revealed two types of interactions between AuNPs and the MPS-functionalized surface: (a) AuNPs anchor through Au-S chemisorption linkage resulting in strong immobilization and (b) some of the AuNPs are supported by physisorption, driven by BMI-PF(6). The attachment of these particles remains unchanged with sonication. The replacement of BMI-PF(6) aggregates from physisorbed AuNPs with DDT molecules advances the dilution of their interaction with the MPS-functionalized surface, and they subsequently detach from the silicon surface. The present finding is promising for the immobilization of ionic liquid-stabilized nanoparticles, which is very desirable for electronic and catalytic device fabrication. Additionally, these environmentally friendly AuNPs are expected to replace conventional citrate-stabilized AuNPs.

19.
Langmuir ; 24(8): 3787-93, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18338912

RESUMO

Self-assembly of citrate-stabilized gold nanoparticles (AuNPs) onto an optically transparent indium tin oxide (ITO) surface followed by neutralization of these particles using dodecanethiol as a surfactant have been demonstrated. X-ray photoelectron spectroscopic (XPS) studies revealed the partial removal of citrate ions from the immobilized AuNPs, which advances the dilution of electrostatic attraction between AuNPs and the APS (amino-terminated monolayer)-functionalized ITO surface. The resultant AuNPs restore their mobility to some extent and form small ensembles. Some of the immobilized AuNPs were completely removed from the surface due to neutralization, as confirmed by XPS studies. Interparticle distance and size of ensembles were manipulated by consecutive cycles of immobilization and neutralization of AuNPs. Controlled nanostructural fabrication progression, which leads to two-dimensional lateral growth of AuNPs, provides a method for systematically shifting the surface plasmon resonance band based on the increase in plasmon coupling among the closely placed AuNPs of an ensemble. The magnitude of shift increases with the size of ensemble. This manipulated chemical strategy offers a convenient and simple method to tune the optical properties of materials on a nanoscale.

20.
Langmuir ; 23(6): 3193-8, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17274636

RESUMO

Monolayers attached to a Si(111) surface through Si-C-C or Si-O-C covalent bonds were prepared by the thermally activated reaction (150 degrees C) of vinylferrocene (VFC) or ferrocenecarboxaldehyde (FCA) molecules with hydrogen-terminated Si(111) substrate in order to compare their reactivities. The resulting monolayers gave a couple of redox waves on voltammograms due to ferrocenyl moieties tethered at the surface. The voltammetric quantification revealed that the growth of electrochemically active layers was terminated within 5 h and the final surface coverages of the active ferrocenyl moieties were 58% and 16% for VFC- and FCA-based monolayers, respectively, indicating that the aldehyde molecule is less reactive. X-ray photoelectron spectroscopy and ellipsometry, however, gave an indication that the growth of the VFC layer did not self-terminate and proceeded beyond a monolayer, while this overgrown part of the layer was not electrochemically active.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA