Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542258

RESUMO

As a space project, in "Stem Cells" by the Japan Aerospace Exploration Agency (JAXA), frozen mouse ES cells were stored on the International Space Station (ISS) in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) for 1584 days. After taking these cells back to the ground, the cells were thawed and cultured, and their gene expressions were comprehensively analyzed using RNA sequencing in order to elucidate the early response of the cells to long-time exposure to space radiation consisting of various ionized particles. The comparisons of gene expression involved in double-stranded break (DSB) repair were examined. The expressions of most of the genes that were involved in homologous recombination (HR) and non-homologous end joining (NHEJ) were not significantly changed between the ISS-stocked cells and ground-stocked control cells. However, the transcription of Trp53inp1 (tumor protein 53 induced nuclear protein-1), Cdkn1a (p21), and Mdm2 genes increased in ISS-stocked cells as well as Fe ion-irradiated cells compared to control cells. This suggests that accumulated DNA damage caused by space radiation exposure would activate these genes, which are involved in cell cycle arrest for repair and apoptosis in a p53-dependent or -independent manner, in order to prevent cells with damaged genomes from proliferating and forming tumors.


Assuntos
Quebras de DNA de Cadeia Dupla , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Reparo do DNA , Reparo do DNA por Junção de Extremidades , Análise de Sequência de RNA , Perfilação da Expressão Gênica
3.
J Sleep Res ; : e14146, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253863

RESUMO

We aim to identify genetic markers associated with idiopathic hypersomnia, a disabling orphan central nervous system disorder of hypersomnolence that is still poorly understood. In our study, DNA was extracted from 79 unrelated patients diagnosed with idiopathic hypersomnia with long sleep time at the National Reference Center for Narcolepsy-France according to very stringent diagnostic criteria. Whole exome sequencing on the first 30 patients with idiopathic hypersomnia (25 females and 5 males) allowed the single nucleotide variants to be compared with a control population of 574 healthy subjects from the French Exome project database. We focused on the identification of genetic variants among 182 genes related to the regulation of sleep and circadian rhythm. Candidate variants obtained by exome sequencing analysis were then validated in a second sample of 49 patients with idiopathic hypersomnia (37 females and 12 males). Our study characterised seven variants from six genes significantly associated with idiopathic hypersomnia compared with controls. A targeted sequencing analysis of these seven variants on 49 other patients with idiopathic hypersomnia confirmed the relative over-representation of the A➔C variant of rs2859390, located in a potential splicing-site of PER3 gene. Our findings support a genetic predisposition and identify pathways involved in the pathogeny of idiopathic hypersomnia. A variant of the PER3 gene may predispose to idiopathic hypersomnia with long sleep time.

4.
Nat Commun ; 14(1): 7200, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938555

RESUMO

Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells are innate immune cells important for the immediate host defence, they can differentiate into memory NK cells. The molecular mechanisms controlling this differentiation are yet to be fully elucidated. Here we identify the scaffold protein Themis2 as a critical regulator of memory NK cell differentiation and function. Themis2-deficient NK cells expressing Ly49H, an activating NK receptor for the mouse cytomegalovirus (MCMV) antigen m157, show enhanced differentiation into memory NK cells and augment host protection against MCMV infection. Themis2 inhibits the effector function of NK cells after stimulation of Ly49H and multiple activating NK receptors, though not specific to memory NK cells. Mechanistically, Themis2 suppresses Ly49H signalling by attenuating ZAP70/Syk phosphorylation, and it also translocates to the nucleus, where it promotes Zfp740-mediated repression to regulate the persistence of memory NK cells. Zfp740 deficiency increases the number of memory NK cells and enhances the effector function of memory NK cells, which further supports the relevance of the Themis2-Zfp740 pathway. In conclusion, our study shows that Themis2 quantitatively and qualitatively regulates NK cell memory formation.


Assuntos
Antígenos Virais , Muromegalovirus , Animais , Camundongos , Diferenciação Celular , Citomegalovirus , Células Matadoras Naturais , Fosforilação
6.
iScience ; 26(7): 107189, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456835

RESUMO

The application of omics to study Caenorhabditis elegans (C. elegans) in the context of spaceflight is increasing, illuminating the wide-ranging biological impacts of spaceflight on physiology. In this review, we highlight the application of omics, including transcriptomics, genomics, proteomics, multi-omics, and integrated omics in the study of spaceflown C. elegans, and discuss the impact, use, and future direction of this branch of research. We highlight the variety of molecular alterations that occur in response to spaceflight, most notably changes in metabolic and neuromuscular gene regulation. These transcriptional features are reproducible and evident across many spaceflown species (e.g., mice and astronauts), supporting the use of C. elegans as a model organism to study spaceflight physiology with translational capital. Integrating tissue-specific, spatial, and multi-omics approaches, which quantitatively link molecular responses to phenotypic adaptations, will facilitate the identification of candidate regulatory molecules for therapeutic intervention and thus represents the next frontiers in C. elegans space omics research.

7.
Commun Biol ; 6(1): 424, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085700

RESUMO

Skeletal muscle is sensitive to gravitational alterations. We recently developed a multiple artificial-gravity research system (MARS), which can generate gravity ranging from microgravity to Earth gravity (1 g) in space. Using the MARS, we studied the effects of three different gravitational levels (microgravity, lunar gravity [1/6 g], and 1 g) on the skeletal muscle mass and myofiber constitution in mice. All mice survived and returned to Earth, and skeletal muscle was collected two days after landing. We observed that microgravity-induced soleus muscle atrophy was prevented by lunar gravity. However, lunar gravity failed to prevent the slow-to-fast myofiber transition in the soleus muscle in space. These results suggest that lunar gravity is enough to maintain proteostasis, but a greater gravitational force is required to prevent the myofiber type transition. Our study proposes that different gravitational thresholds may be required for skeletal muscle adaptation.


Assuntos
Atrofia Muscular , Ausência de Peso , Camundongos , Animais , Atrofia Muscular/prevenção & controle , Músculo Esquelético/fisiologia , Ausência de Peso/efeitos adversos , Lua
8.
Cell Rep ; 42(4): 112289, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952339

RESUMO

Myofibers are broadly characterized as fatigue-resistant slow-twitch (type I) fibers and rapidly fatiguing fast-twitch (type IIa/IIx/IIb) fibers. However, the molecular regulation of myofiber type is not entirely understood; particularly, information on regulators of fast-twitch muscle is scarce. Here, we demonstrate that the large Maf transcription factor family dictates fast type IIb myofiber specification in mice. Remarkably, the ablation of three large Mafs leads to the drastic loss of type IIb myofibers, resulting in enhanced endurance capacity and the reduction of muscle force. Conversely, the overexpression of each large Maf in the type I soleus muscle induces type IIb myofibers. Mechanistically, a large Maf directly binds to the Maf recognition element on the promoter of myosin heavy chain 4, which encodes the type IIb myosin heavy chain, driving its expression. This work identifies the large Maf transcription factor family as a major regulator for fast type IIb muscle determination.


Assuntos
Fibras Musculares de Contração Rápida , Cadeias Pesadas de Miosina , Camundongos , Animais , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo
9.
Res Sq ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798347

RESUMO

Spaceflight poses a unique set of challenges to humans and the hostile Spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on spaceflown murine transcriptomic datasets focused on the skin, biomedical profiles from fifty NASA astronauts, and confirmation via transcriptomic data from JAXA astronauts, the NASA Twins Study, and the first civilian commercial mission, Inspiration4. Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation were determined to be involved with skin health risks during Spaceflight. Additionally, a machine learning model was utilized to determine key genes driving Spaceflight response in the skin. These results can be used for determining potential countermeasures to mitigate Spaceflight damage to the skin.

10.
Nature ; 612(7940): 512-518, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477539

RESUMO

Progress has been made in the elucidation of sleep and wakefulness regulation at the neurocircuit level1,2. However, the intracellular signalling pathways that regulate sleep and the neuron groups in which these intracellular mechanisms work remain largely unknown. Here, using a forward genetics approach in mice, we identify histone deacetylase 4 (HDAC4) as a sleep-regulating molecule. Haploinsufficiency of Hdac4, a substrate of salt-inducible kinase 3 (SIK3)3, increased sleep. By contrast, mice that lacked SIK3 or its upstream kinase LKB1 in neurons or with a Hdac4S245A mutation that confers resistance to phosphorylation by SIK3 showed decreased sleep. These findings indicate that LKB1-SIK3-HDAC4 constitute a signalling cascade that regulates sleep and wakefulness. We also performed targeted manipulation of SIK3 and HDAC4 in specific neurons and brain regions. This showed that SIK3 signalling in excitatory neurons located in the cerebral cortex and the hypothalamus positively regulates EEG delta power during non-rapid eye movement sleep (NREMS) and NREMS amount, respectively. A subset of transcripts biased towards synaptic functions was commonly regulated in cortical glutamatergic neurons through the expression of a gain-of-function allele of Sik3 and through sleep deprivation. These findings suggest that NREMS quantity and depth are regulated by distinct groups of excitatory neurons through common intracellular signals. This study provides a basis for linking intracellular events and circuit-level mechanisms that control NREMS.


Assuntos
Neurônios , Duração do Sono , Sono , Vigília , Animais , Camundongos , Eletroencefalografia , Neurônios/metabolismo , Neurônios/fisiologia , Sono/genética , Sono/fisiologia , Privação do Sono/genética , Vigília/genética , Vigília/fisiologia , Transdução de Sinais , Ritmo Delta , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Ácido Glutâmico/metabolismo , Sono de Ondas Lentas/genética , Sono de Ondas Lentas/fisiologia
11.
Patterns (N Y) ; 3(10): 100550, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277820

RESUMO

Widespread generation and analysis of omics data have revolutionized molecular medicine on Earth, yet its power to yield new mechanistic insights and improve occupational health during spaceflight is still to be fully realized in humans. Nevertheless, rapid technological advancements and ever-regular spaceflight programs mean that longitudinal, standardized, and cost-effective collection of human space omics data are firmly within reach. Here, we consider the practicality and scientific return of different sampling methods and omic types in the context of human spaceflight. We also appraise ethical and legal considerations pertinent to omics data derived from European astronauts and spaceflight participants (SFPs). Ultimately, we propose that a routine omics collection program in spaceflight and analog environments presents a golden opportunity. Unlocking this bright future of artificial intelligence (AI)-driven analyses and personalized medicine approaches will require further investigation into best practices, including policy design and standardization of omics data, metadata, and sampling methods.

12.
Commun Biol ; 5(1): 907, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064593

RESUMO

Oxytocin is involved in pain transmission, although the detailed mechanism is not fully understood. Here, we generate a transgenic rat line that expresses human muscarinic acetylcholine receptors (hM3Dq) and mCherry in oxytocin neurons. We report that clozapine-N-oxide (CNO) treatment of our oxytocin-hM3Dq-mCherry rats exclusively activates oxytocin neurons within the supraoptic and paraventricular nuclei, leading to activation of neurons in the locus coeruleus (LC) and dorsal raphe nucleus (DR), and differential gene expression in GABA-ergic neurons in the L5 spinal dorsal horn. Hyperalgesia, which is robustly exacerbated in experimental pain models, is significantly attenuated after CNO injection. The analgesic effects of CNO are ablated by co-treatment with oxytocin receptor antagonist. Endogenous oxytocin also exerts anti-inflammatory effects via activation of the hypothalamus-pituitary-adrenal axis. Moreover, inhibition of mast cell degranulation is found to be involved in the response. Taken together, our results suggest that oxytocin may exert anti-nociceptive and anti-inflammatory effects via both neuronal and humoral pathways.


Assuntos
Analgésicos , Anti-Inflamatórios , Ocitocina , Núcleo Hipotalâmico Paraventricular , Analgésicos/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Neurônios GABAérgicos/metabolismo , Ocitocina/metabolismo , Dor/tratamento farmacológico , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Transgênicos
13.
Mol Cell Neurosci ; 121: 103745, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660087

RESUMO

Microgravity (MG) exposure and motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), lead to motor deficits, including muscle atrophy and loss of neuronal activity. Abnormalities in motor neurons and muscles caused by MG exposure can be recovered by subsequent ground exercise. In contrast, the degeneration that occurs in ALS is irreversible. A common phenotype between MG exposure and ALS pathology is motor system abnormality, but the causes may be different. In this study, to elucidate the motor system that is affected by each condition, we investigated the effects of MG and the human SOD1 ALS mutation on gene expression in various cell types of the mouse ventral lumbar spinal cord, which is rich in motor neurons innervating the lower limb. To identify cell types affected by MG or ALS pathogenesis, we analyzed differentially expressed genes with known cell-type markers, which were determined from previous single-cell studies of the spinal cord in MG-exposed and SOD1G93A mice, an ALS mouse model. Differentially expressed genes were observed in MG mice in various spinal cord cell types, including neurons, microglia, astrocytes, oligodendrocytes, oligodendrocyte precursor cells, meningeal cells/Schwann cells, and vascular cells. We also examined neuronal populations in the spinal cord. Gene expression in putative excitatory and inhibitory neurons changed more than that in cholinergic motor neurons of the spinal cord in both MG and SOD1G93A mice. Many putative neuron types, especially visceral motor neurons, and axon initial segments (AIS) were affected in MG mice. In contrast, the effect on neurons and AIS in SOD1G93A mice was slight at P30 but progressed with aging. Interestingly, changes in dopaminergic system-related genes were specifically altered in the spinal cord of MG mice. These results indicate that MG and ALS pathology in various cell types contribute to motor neuron degeneration. Furthermore, there were more alterations in neurons in MG-exposed mice than in SOD1G93A mice. A large number of differentially expressed genes (DEGs) in MG mice represent more than SOD1G93A mice with ALS pathology. Elucidation of MG pathogenesis may provide more insight into the pathophysiology of neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Ausência de Peso , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
14.
Elife ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578835

RESUMO

Medullary thymic epithelial cells (mTECs) are critical for self-tolerance induction in T cells via promiscuous expression of tissue-specific antigens (TSAs), which are controlled by the transcriptional regulator, AIRE. Whereas AIRE-expressing (Aire+) mTECs undergo constant turnover in the adult thymus, mechanisms underlying differentiation of postnatal mTECs remain to be discovered. Integrative analysis of single-cell assays for transposase-accessible chromatin (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) suggested the presence of proliferating mTECs with a specific chromatin structure, which express high levels of Aire and co-stimulatory molecules, CD80 (Aire+CD80hi). Proliferating Aire+CD80hi mTECs detected using Fucci technology express a minimal number of Aire-dependent TSAs and are converted into quiescent Aire+CD80hi mTECs expressing high levels of TSAs after a transit amplification. These data provide evidence for the existence of transit-amplifying Aire+mTEC precursors during the Aire+mTEC differentiation process of the postnatal thymus.


Assuntos
Cromatina , Análise de Célula Única , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Timo , Transposases/metabolismo
15.
J Cell Physiol ; 237(5): 2492-2502, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35194789

RESUMO

Exercise is important for the prevention and treatment of sarcopenia and osteoporosis. Although the interactions between skeletal muscles and bone have recently been reported, the myokines linking muscle to bone during exercise remain unknown. We previously revealed that chronic exercise using treadmill running blunts ovariectomy-induced osteopenia in mice. We herein performed an RNA sequence analysis of the gastrocnemius and soleus muscles of male mice with or without chronic exercise to identify the myokines responsible for the effects of chronic exercise on the muscle/bone relationship. We extracted peripheral myelin protein 22 (PMP22) as a humoral factor that was putatively induced by chronic exercise in the soleus and gastrocnemius muscles of mice from the RNA sequence analysis. Chronic exercise significantly enhanced the expression of PMP22 in the gastrocnemius and soleus muscles of female mice. PMP22 suppressed macrophage-colony stimulating factor and receptor activator factor κB ligand-induced increases in the expression of osteoclast-related genes and osteoclast formation from mouse bone marrow cells. Moreover, PMP22 significantly inhibited osteoblast differentiation, alkaline phosphatase activity, and mineralization in mouse osteoblast cultures; however, the overexpression of PMP22 did not affect muscle phenotypes in mouse muscle C2C12 cells. A simple regression analysis revealed that PMP22 mRNA levels in the gastrocnemius and soleus muscles were positively related to cortical bone mineral density at the femurs of mice with or without chronic exercise. In conclusion, we identified PMP22 as a novel myokine induced by chronic exercise in mice. We first showed that PMP22 suppresses osteoclast formation and the osteoblast phenotype in vitro.


Assuntos
Doenças Ósseas Metabólicas , Osso e Ossos , Proteínas da Mielina/metabolismo , Animais , Doenças Ósseas Metabólicas/metabolismo , Osso e Ossos/metabolismo , Feminino , Masculino , Camundongos , Músculo Esquelético/metabolismo , Osteoclastos/metabolismo
16.
PLoS Biol ; 20(1): e3001507, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041655

RESUMO

Genome editing can introduce designed mutations into a target genomic site. Recent research has revealed that it can also induce various unintended events such as structural variations, small indels, and substitutions at, and in some cases, away from the target site. These rearrangements may result in confounding phenotypes in biomedical research samples and cause a concern in clinical or agricultural applications. However, current genotyping methods do not allow a comprehensive analysis of diverse mutations for phasing and mosaic variant detection. Here, we developed a genotyping method with an on-target site analysis software named Determine Allele mutations and Judge Intended genotype by Nanopore sequencer (DAJIN) that can automatically identify and classify both intended and unintended diverse mutations, including point mutations, deletions, inversions, and cis double knock-in at single-nucleotide resolution. Our approach with DAJIN can handle approximately 100 samples under different editing conditions in a single run. With its high versatility, scalability, and convenience, DAJIN-assisted multiplex genotyping may become a new standard for validating genome editing outcomes.


Assuntos
Edição de Genes , Técnicas de Genotipagem/métodos , Software , Animais , Técnicas de Introdução de Genes , Genoma , Genótipo , Mutação INDEL , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Mutação , Sequenciamento por Nanoporos , Análise de Sequência de DNA
17.
Cell Chem Biol ; 29(4): 680-689.e6, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34986326

RESUMO

During insulin resistance, lipid uptake by the liver is promoted by peroxisome proliferator-activated protein (PPAR) γ upregulation, leading to hepatic steatosis. Insulin, however, does not directly regulate adipogenic gene expression in liver, and the mechanisms for its upregulation in obesity remain unclear. Here, we show that the Irs2 locus, a critical regulator of insulin actions, encodes an antisense transcript, ASIrs2, whose expression increases in obesity or after refeeding in liver, reciprocal to that of Irs2. ASIrs2 regulates hepatic Pparg expression, and its suppression ameliorates steatosis in obese mice. The human ortholog AL162497.1, whose expression is correlated with that of hepatic PPARG and the severity of non-alcoholic steatohepatitis (NASH), shows genomic organization similar to that of ASIrs2. We also identified HARS2 as a potential binding protein for ASIrs2, functioning as a regulator of Pparg. Collectively, our data reveal a functional duality of the Irs2 gene locus, where reciprocal changes of Irs2 and ASIrs2 in obesity cause insulin resistance and steatosis.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Obesidade/genética , PPAR gama/genética
18.
Stem Cell Reports ; 17(1): 53-67, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34919813

RESUMO

Reprogramming of murine female somatic cells to induced pluripotent stem cells (iPSCs) is accompanied by X chromosome reactivation (XCR), by which the inactive X chromosome (Xi) in female somatic cells becomes reactivated. However, how Xi initiates reactivation during reprogramming remains poorly defined. Here, we used a Sendai virus-based reprogramming system to generate partially reprogrammed iPSCs that appear to be undergoing the initial phase of XCR. Allele-specific RNA-seq of these iPSCs revealed that XCR initiates at a subset of genes clustered near the centromere region. The initial phase of XCR occurs when the cells transit through mesenchymal-epithelial transition (MET) before complete shutoff of Xist expression. Moreover, regulatory regions of these genes display dynamic changes in lysine-demethylase 1a (KDM1A) occupancy. Our results identified clustered genes on the Xi that show reactivation in the initial phase of XCR during reprogramming and suggest a possible role for histone demethylation in this process.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Família Multigênica , Ativação Transcricional , Inativação do Cromossomo X/genética , Alelos , Animais , Biomarcadores , Técnicas de Reprogramação Celular , Fibroblastos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Histona Desmetilases , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Célula Única , Transcriptoma
20.
Sci Rep ; 11(1): 20231, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642357

RESUMO

Increase of the enteric bacteriophages (phage), components of the enteric virome, has been associated with the development of inflammatory bowel diseases. However, little is known about how a given phage contributes to the regulation of intestinal inflammation. In this study, we isolated a new phage associated with Enterococcus gallinarum, named phiEG37k, the level of which was increased in C57BL/6 mice with colitis development. We found that, irrespective of the state of inflammation, over 95% of the E. gallinarum population in the mice contained phiEG37k prophage within their genome and the phiEG37k titers were proportional to that of E. gallinarum in the gut. To explore whether phiEG37k impacts intestinal homeostasis and/or inflammation, we generated mice colonized either with E. gallinarum with or without the prophage phiEG37k. We found that the mice colonized with the bacteria with phiEG37k produced more Mucin 2 (MUC2) that serves to protect the intestinal epithelium, as compared to those colonized with the phage-free bacteria. Consistently, the former mice were less sensitive to experimental colitis than the latter mice. These results suggest that the newly isolated phage has the potential to protect the host by strengthening mucosal integrity. Our study may have clinical implication in further understanding of how bacteriophages contribute to the gut homeostasis and pathogenesis.


Assuntos
Bacteriófagos/classificação , Colite/microbiologia , Enterococcus/patogenicidade , Mucina-2/metabolismo , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Colite/imunologia , Modelos Animais de Doenças , Enterococcus/virologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA