Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 382(2272): 20230218, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38679054

RESUMO

The cutoff effect is a significant determinant of solar magnetohydrodynamic wave propagation and hence pivotal in energy transfer studies, such as solar plasma heating and seismological diagnostics. Despite continuous efforts, no good agreement between observed waveperiods and theory or numerical simulations was found. Our objective is to investigate the magnetoacoustic cutoff effect in the partially ionized solar atmosphere, factoring in the two-fluid effects. We developed a two-fluid MHD numerical model and used it to simulate a quiet region of the Sun from the top of the convective zone to the low corona. Our findings show that the ongoing granulation excites a wide range of waves propagating into the upper atmospheric layers. The cutoff waveperiods strongly depend on the height. Two-fluid waveperiods obtained with numerical simulations reproduce the recent observations at a very good level of compliance. Furthermore, direct comparison with strongly coupled cases that imitate the single-fluid approximation have shown that the waveperiod propagation pattern is only present in fully two-fluid simulations. We conclude that the presence of neutrals and therefore collisional terms change the dynamics of the magnetized plasma, in comparison with the single-fluid approximation. This effect is more prominently seen in the upper photosphere and chromosphere. This article is part of the theme issue 'Partially ionized plasma of the solar atmosphere: recent advances and future pathways'.

2.
Nat Astron ; 7(7): 856-866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483848

RESUMO

The solar corona is two to three orders of magnitude hotter than the underlying photosphere, and the energy loss of coronal plasma is extremely strong, requiring a heating flux of over 1,000 W m-2 to maintain its high temperature. Using the 1.6 m Goode Solar Telescope, we report a detection of ubiquitous and persistent transverse waves in umbral fibrils in the chromosphere of a strongly magnetized sunspot. The energy flux carried by these waves was estimated to be 7.52 × 106 W m-2, three to four orders of magnitude stronger than the energy loss rate of plasma in active regions. Two-fluid magnetohydrodynamic simulations reproduced the high-resolution observations and showed that these waves dissipate significant energy, which is vital for coronal heating. Such transverse oscillations and the associated strong energy flux may exist in a variety of magnetized regions on the Sun, and could be the observational target of next-generation solar telescopes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA