Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Asian J ; 13(24): 3942-3946, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30358121

RESUMO

Aqueous surfactant dispersion is the most typical starting step to functionalize materials consisting of carbon nanotubes, but the effects of surfactants on the electronic properties are still unclear. Here we report how the functional groups of surfactants affect the electronic properties of carbon nanotube films. Using spectroscopic and thermoelectric characterization, we demonstrate that anionic and non-ionic surfactants contribute to the formation of p-type and n-type carbon nanotubes, respectively. Additionally, p-type doping with oxygen adsorption is found to compete with surfactants' doping. These findings are useful for designing the srarting carbon nanotube materials exhibiting desirable electronic properties.

2.
Chem Commun (Camb) ; 53(74): 10259-10262, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28812081

RESUMO

This study investigates the hydride-mediated electron transfer doping of single-walled carbon nanotubes using absorption spectroscopy and thermoelectric measurements. Specific solvent basicity is found to be important for the efficient n-type doping of carbon nanotubes. This progress is an essential requirement for the future development of electronic and energy devices.

3.
Chem Asian J ; 11(17): 2423-7, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27439731

RESUMO

The thermally-triggered n-type doping of single-walled carbon nanotubes is demonstrated using 1,1'-bis(diphenylphosphino)ferrocene, a novel n-type dopant. Through a simple thermal vacuum process, the phosphine compounds are moderately encapsulated inside single-walled carbon nanotubes. The encapsulation into SWNTs is carefully characterized using Raman/X-ray spectroscopy and transmission electron microscopy. This easy-to-handle doping with air-stable precursors for n-type SWNTs enables the large-scale fabrication of thermoelectric materials showing an excellent power factor exceeding approximately 240 µW mK(-2) .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA