Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610243

RESUMO

In this paper, we present the development and the validation of a novel index of nociception/anti-nociception (N/AN) based on skin impedance measurement in time and frequency domain with our prototype AnspecPro device. The primary objective of the study was to compare the Anspec-PRO device with two other commercial devices (Medasense, Medstorm). This comparison was designed to be conducted under the same conditions for the three devices. This was carried out during total intravenous anesthesia (TIVA) by investigating its outcomes related to noxious stimulus. In a carefully designed clinical protocol during general anesthesia from induction until emergence, we extract data for estimating individualized causal dynamic models between drug infusion and their monitored effect variables. Specifically, these are Propofol hypnotic drug to Bispectral index of hypnosis level and Remifentanil opioid drug to each of the three aforementioned devices. When compared, statistical analysis of the regions before and during the standardized stimulus shows consistent difference between regions for all devices and for all indices. These results suggest that the proposed methodology for data extraction and processing for AnspecPro delivers the same information as the two commercial devices.


Assuntos
Nociceptividade , Propofol , Anestesia Geral , Impedância Elétrica , Remifentanil
2.
IEEE Trans Biomed Eng ; 70(10): 2991-3002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37527300

RESUMO

OBJECTIVE: The problem of reliable and widely accepted measures of pain is still open. It follows the objective of this work as pain estimation through post-surgical trauma modeling and classification, to increase the needed reliability compared to measurements only. METHODS: This article proposes (i) a recursive identification method to obtain the frequency response and parameterization using fractional-order impedance models (FOIM), and (ii) deep learning with convolutional neural networks (CNN) classification algorithms using time-frequency data and spectrograms. The skin impedance measurements were conducted on 12 patients throughout the postanesthesia care in a proof-of-concept clinical trial. Recursive least-squares system identification was performed using a genetic algorithm for initializing the parametric model. The online parameter estimates were compared to the self-reported level by the Numeric Rating Scale (NRS) for analysis and validation of the results. Alternatively, the inputs to CNNs were the spectrograms extracted from the time-frequency dataset, being pre-labeled in four intensities classes of pain during offline and online training with the NRS. RESULTS: The tendency of nociception could be predicted by monitoring the changes in the FOIM parameters' values or by retraining online the network. Moreover, the tissue heterogeneity, assumed during nociception, could follow the NRS trends. The online predictions of retrained CNN have more specific trends to NRS than pain predicted by the offline population-trained CNN. CONCLUSION: We propose tailored online identification and deep learning for artefact corrupted environment. The results indicate estimations with the potential to avoid over-dosing due to the objectivity of the information. SIGNIFICANCE: Models and artificial intelligence (AI) allow objective and personalized nociception-antinociception prediction in the patient safety era for the design and evaluation of closed-loop analgesia controllers.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4708-4711, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086513

RESUMO

The societal and economic burden of unassessed and unmodeled postoperative pain is high and predicted to rise over the next decade, leading to over-dosing as a result of subjective (NRS-based) over-estimation by the patient. This study identifies how post-surgical trauma alters the parameters of impedance models, to detect and examine acute pain variability. Model identification is performed on clinical data captured from post-anesthetized patients, using Anspec-PRO prototype apriori validated for clinical pain assessment. The multisine excitation of this in-house developed device enables utilizing the complex skin impedance frequency response in data-driven electrical models. The single-dispersion Cole model is proposed to fit the clinical curve in the given frequency range. Changes in identified parameters are analyzed for correlation with the patient's reported pain for the same time moment. The results suggest a significant correlation for the capacitor component. Clinical Relevance- Individual model parameters validated on patients in the post-anesthesia care unit extend the knowledge for objective pain detection to positively influence the outcome of clinical analgesia management.


Assuntos
Analgesia , Dor Pós-Operatória , Impedância Elétrica , Humanos , Manejo da Dor , Medição da Dor/métodos , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/etiologia
4.
ISA Trans ; 129(Pt A): 287-296, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35115163

RESUMO

PID controllers are largely used in industry. Auto-tuning methods for these controllers have emerged over the years, including the well-known Ziegler-Nichols method. Several extensions and improvements to this early autotuning method have been proposed throughout the years. A new method is introduced in this manuscript suitable for fractional order PIDs. The "direction" of the loop frequency response in the critical Ziegler-Nichols point is shaped using the the fractional order. The numerical results show that better closed loop performance is achieved. Different case studies are considered to validate the proposed method and demonstrate its advantage compared to the standard method.

5.
Sensors (Basel) ; 21(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502811

RESUMO

The present manuscript aims at raising awareness of the endless possibilities of fractional calculus applied not only to system identification and control engineering, but also into sensing and filtering domains. The creation of the fractance device has enabled the physical realization of a new array of sensors capable of gathering more information. The same fractional-order electronic component has led to the possibility of exploring analog filtering techniques from a practical perspective, enlarging the horizon to a wider frequency range, with increased robustness to component variation, stability and noise reduction. Furthermore, fractional-order digital filters have developed to provide an alternative solution to higher-order integer-order filters, with increased design flexibility and better performance. The present study is a comprehensive review of the latest advances in fractional-order sensors and filters, with a focus on design methodologies and their real-life applicability reported in the last decade. The potential enhancements brought by the use of fractional calculus have been exploited as well in sensing and filtering techniques. Several extensions of the classical sensing and filtering methods have been proposed to date. The basics of fractional-order filters are reviewed, with a focus on the popular fractional-order Kalman filter, as well as those related to sensing. A detailed presentation of fractional-order filters is included in applications such as data transmission and networking, electrical and chemical engineering, biomedicine and various industrial fields.

6.
Sensors (Basel) ; 20(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256120

RESUMO

The paper aims to revive the interest in bioimpedance analysis for pain studies in communicating and non-communicating (anesthetized) individuals for monitoring purpose. The plea for exploitation of full potential offered by the complex (bio)impedance measurement is emphasized through theoretical and experimental analysis. A non-invasive, low-cost reliable sensor to measure skin impedance is designed with off-the-shelf components. This is a second generation prototype for pain detection, quantification, and modeling, with the objective to be used in fully anesthetized patients undergoing surgery. The 2D and 3D time-frequency, multi-frequency evaluation of impedance data is based on broadly available signal processing tools. Furthermore, fractional-order impedance models are implied to provide an indication of change in tissue dynamics correlated with absence/presence of nociceptor stimulation. The unique features of the proposed sensor enhancements are described and illustrated here based on mechanical and thermal tests and further reinforced with previous studies from our first generation prototype.


Assuntos
Dor Aguda , Processamento de Sinais Assistido por Computador , Dor Aguda/diagnóstico , Impedância Elétrica , Humanos
7.
J Adv Res ; 25: 191-203, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32922986

RESUMO

The present study provides a generalization of event-based control to the field of fractional calculus, combining the benefits brought by the two approaches into an industrial-suitable control strategy. During recent years, control applications based on fractional order differintegral operators have gained more popularity due to their proven superior performance when compared to classical, integer order, control strategies. However, the current industrial setting is not yet prepared to fully adapt to complex fractional order control implementations that require hefty computational resources; needing highly-efficient methods with minimum control effort. The solution to this particular problem lies in combining benefits of event-based control such as resource optimization and bandwidth allocation with the superior performance of fractional order control. Theoretical and implementation aspects are developed in order to provide a generalization of event-based control into the fractional calculus field. Different numerical examples validate the proposed methodology, providing a useful tool, especially for industrial applications where the event-based control is most needed. Several event-based fractional order implementation possibilities are explored, the final result being an event-based fractional order control methodology.

8.
Heliyon ; 5(7): e02154, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31388585

RESUMO

Many processes in industry are highly-coupled Multiple-Input Multiple-Output (MIMO) systems. In this paper, a methodology, based on the Kissing Circle (KC) tuning method, is proposed to tune a fractional-order PI controller for these types of systems. The KC method relies on frequency domain specifications and emphasizes improving robustness. The method does not require a model, a single sine test suffices to obtain the controller parameters. Hence, the method can be categorized as an auto-tuner. For comparison, an integer-order PI is tuned with the same requirements. To evaluate and analyze the performance of both controllers an experimental test bench is used, i.e. a landscape office lighting system. A direct low-order discretization method is used to implement the controller in a real process. Both controllers are subjected to simulation experiments to test the performance in time and frequency domain and they are subjected to process variations to evaluate their robustness. The fractional controller manages to control a process that is susceptible to 85% variation in time constant mismatch as opposed to 79% for the integer-order controller. An Integer Absolute Error evaluation of experimental results show that the fractional-order PI controller and integer-order PI controller have similar control performance, as expected from the frequency domain analysis. As model uncertainty can add up in MIMO systems, improved robustness is crucial and with this methodology the control performance does not deteriorate. Moreover, a decrease in power consumption of 6% is observed.

9.
ISA Trans ; 74: 229-238, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29395129

RESUMO

Fractional order systems become increasingly popular due to their versatility in modelling and control applications across various disciplines. However, the bottleneck in deploying these tools in practice is related to their implementation on real-life systems. Numerical approximations are employed but their complexity no longer match the attractive simplicity of the original fractional order systems. This paper proposes a low-order, computationally stable and efficient method for direct approximation of general order (fractional order) systems in the form of discrete-time rational transfer functions, e.g. processes, controllers. A fair comparison to other direct discretization methods is presented, demonstrating its added value with respect to the state of art.

10.
ISA Trans ; 62: 268-75, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26903289

RESUMO

Fractional order PID controllers benefit from an increasing amount of interest from the research community due to their proven advantages. The classical tuning approach for these controllers is based on specifying a certain gain crossover frequency, a phase margin and a robustness to gain variations. To tune the fractional order controllers, the modulus, phase and phase slope of the process at the imposed gain crossover frequency are required. Usually these values are obtained from a mathematical model of the process, e.g. a transfer function. In the absence of such model, an auto-tuning method that is able to estimate these values is a valuable alternative. Auto-tuning methods are among the least discussed design methods for fractional order PID controllers. This paper proposes a novel approach for the auto-tuning of fractional order controllers. The method is based on a simple experiment that is able to determine the modulus, phase and phase slope of the process required in the computation of the controller parameters. The proposed design technique is simple and efficient in ensuring the robustness of the closed loop system. Several simulation examples are presented, including the control of processes exhibiting integer and fractional order dynamics.

11.
Diabetes ; 63(2): 701-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24101677

RESUMO

Podocytes are a major component of the glomerular filtration barrier, and their ability to sense insulin is essential to prevent proteinuria. Here we identify the insulin downstream effector GLUT4 as a key modulator of podocyte function in diabetic nephropathy (DN). Mice with a podocyte-specific deletion of GLUT4 (G4 KO) did not develop albuminuria despite having larger and fewer podocytes than wild-type (WT) mice. Glomeruli from G4 KO mice were protected from diabetes-induced hypertrophy, mesangial expansion, and albuminuria and failed to activate the mammalian target of rapamycin (mTOR) pathway. In order to investigate whether the protection observed in G4 KO mice was due to the failure to activate mTOR, we used three independent in vivo experiments. G4 KO mice did not develop lipopolysaccharide-induced albuminuria, which requires mTOR activation. On the contrary, G4 KO mice as well as WT mice treated with the mTOR inhibitor rapamycin developed worse adriamycin-induced nephropathy than WT mice, consistent with the fact that adriamycin toxicity is augmented by mTOR inhibition. In summary, GLUT4 deficiency in podocytes affects podocyte nutrient sensing, results in fewer and larger cells, and protects mice from the development of DN. This is the first evidence that podocyte hypertrophy concomitant with podocytopenia may be associated with protection from proteinuria.


Assuntos
Regulação da Expressão Gênica/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Podócitos/citologia , Podócitos/metabolismo , Albuminúria , Animais , Tamanho Celular , Nefropatias Diabéticas , Doxorrubicina/toxicidade , Feminino , Barreira de Filtração Glomerular/citologia , Barreira de Filtração Glomerular/patologia , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Lipopolissacarídeos/toxicidade , Camundongos
12.
J Gastrointestin Liver Dis ; 15(3): 293-5, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17013456

RESUMO

The authors present the case of a 17 year old girl admitted to hospital for poor general state, mild scleral jaundice, deficient nutritional state, oliguria and massive ascites. She was diagnosed with Budd-Chiari syndrome: thrombosis of the left suprahepatic vein and nonocclusive thrombosis of the inferior vena cava at the level of the 12th thoracal and the lumbar vertebrae. The specific feature of the case was the association of portal and splenic vein thrombosis. A mesentericocaval shunt with external jugular grefon was performed. The evolution at 20 months after surgery has been favorable. She has no ascites, the nutritional state has normalized and hepatic laboratory findings have returned to normal values. There still persists a high consistency splenomegaly, but without hematological hypersplenism. Even though the mesentericocaval shunt is not without complications, it represents an efficient alternative for the treatment of Budd-Chiari syndrome, when endovascular techniques are not available.


Assuntos
Síndrome de Budd-Chiari/cirurgia , Veias Mesentéricas/cirurgia , Derivação Portocava Cirúrgica/métodos , Veia Porta , Veia Esplênica , Trombose Venosa/complicações , Adolescente , Síndrome de Budd-Chiari/etiologia , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA