Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Pharm Sci ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527617

RESUMO

Bioscaffolds, which promote cell regeneration and restore tissues' functions, have emerged as significant need in clinic. The hybrid of several biomaterials in a bioscaffold renders clinically advanced and relevant properties for applications yet add challenges in cost efficiency, production, and clinical investigation. This study proposes a facile and sustainable method to formulate a triple-hybrid bioscaffold based on Vietnamese cocoon origin Silk Fibroin, Chitosan, and nano-Biphasic Calcium Phosphates (nano-BCP) that can be easily molded, has high porosity (55-80%), and swelling capacity that facilitates cell proliferation and nutrient diffusion. Notably, their mechanical properties, in particular compressive strength, can easily be tuned in a range from 50 - 200 kPa by changing the amount of nano-BCP addition, which is comparable to the successful precedents for productive cell regeneration. The latter parts investigate the biopharmaceutical properties of a representative bioscaffold, including drug loading and release studies with two kinds of active compounds, salmon calcitonin and methylprednisolone. Furthermore, the bioscaffold is highly biocompatible as the results of hemocompatibility and hemostasis tests, as well as ovo chick chorioallantoic membrane investigation. The findings of the study suggest the triple-hybrid scaffold as a promising platform for multi-functional drug delivery and bone defect repair.

2.
Int J Pharm ; 642: 123120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37307960

RESUMO

Benznidazole, a poorly soluble in water drug, is the first-line medication for the treatment of Chagas disease, but long treatment periods at high dosages cause several adverse effects with insufficient activity in the chronic phase. According to these facts, there is a serious need for novel benznidazole formulations for improving the chemotherapy of Chagas disease. Thus, this work aimed to incorporate benznidazole into lipid nanocapsules for improving its solubility, dissolution rate in different media, and permeability. Lipid nanocapsules were prepared by the phase inversion technique and were fully characterized. Three formulations were obtained with a diameter of 30, 50, and 100 nm and monomodal size distribution with a low polydispersity index and almost neutral zeta potential. Drug encapsulation efficiency was between 83 and 92 % and the drug loading was between 0.66 and 1.04 %. Loaded formulations were stable under storage for one year at 4 °C. Lipid nanocapsules were found to protect benznidazole in simulated gastric fluid and provide a sustained release platform for the drug in a simulated intestinal fluid containing pancreatic enzymes. The small size and the almost neutral surface charge of these lipid nanocarriers improved their penetration through mucus and such formulations showed a reduced chemical interaction with gastric mucin glycoproteins. LNCs. The incorporation of benznidazole in lipid nanocapsules improved the drug permeability across intestinal epithelium by 10-fold compared with the non-encapsulated drug while the exposure of the cell monolayers to these nanoformulations did not affect the integrity of the epithelium.


Assuntos
Nanocápsulas , Nanocápsulas/química , Liberação Controlada de Fármacos , Lipídeos/química , Permeabilidade , Estabilidade de Medicamentos
3.
J Aerosol Med Pulm Drug Deliv ; 36(3): 144-151, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310368

RESUMO

Nanopharmaceuticals represent a group of nanoparticles engineered for medical purposes. Nowadays, nanotechnology offers several possibilities to improve the safety and efficacy of medicines by designing advanced carrier systems which have been found to offer particular advantages when formulated in the nanoscale. Some of the initially marketed nano-formulations already demonstrate advantages over conventional formulations. Innovative delivery systems offer the possibility to not only control drug release but also to overcome biological barriers. For the translation of new drug products from bench to bedside, however, it is pivotal to test and prove their safety. This is of course also true for nanopharmaceuticals, where in particular the biocompatibility and also the clearance/biodegradation of the carrier material after drug delivery has to be demonstrated. The pulmonary route offers some great opportunities for noninvasive drug delivery but also implicates peculiar challenges. Advanced aerosol formulations with innovative drug carriers have already contributed to the significant progress of inhalation therapy. However, in spite of the large alveolar epithelial surface area, the respiratory tract still features diverse efficient biological barriers, primarily designed by nature to protect the human body against inhaled pollutants and pathogens. Only a thorough understanding of particle-lung interactions will allow the rational design of novel nanopharmaceuticals capable of overcoming these barriers, while of course always keeping in mind the strict demands for their safety. While the recent resurrection of inhaled insulin has already confirmed the potential of the pulmonary route for systemic delivery of biopharmaceuticals, inhaled nanopharmaceuticals, currently under investigation, promise to improve also local therapies like anti-infectives.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Administração por Inalação , Liberação Controlada de Fármacos , Excipientes
4.
Respir Res ; 24(1): 80, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922832

RESUMO

BACKGROUND: Premature birth, perinatal inflammation, and life-saving therapies such as postnatal oxygen and mechanical ventilation are strongly associated with the development of bronchopulmonary dysplasia (BPD); these risk factors, alone or combined, cause lung inflammation and alter programmed molecular patterns of normal lung development. The current knowledge on the molecular regulation of lung development mainly derives from mechanistic studies conducted in newborn rodents exposed to postnatal hyperoxia, which have been proven useful but have some limitations. METHODS: Here, we used the rabbit model of BPD as a cost-effective alternative model that mirrors human lung development and, in addition, enables investigating the impact of premature birth per se on the pathophysiology of BPD without further perinatal insults (e.g., hyperoxia, LPS-induced inflammation). First, we characterized the rabbit's normal lung development along the distinct stages (i.e., pseudoglandular, canalicular, saccular, and alveolar phases) using histological, transcriptomic and proteomic analyses. Then, the impact of premature birth was investigated, comparing the sequential transcriptomic profiles of preterm rabbits obtained at different time intervals during their first week of postnatal life with those from age-matched term pups. RESULTS: Histological findings showed stage-specific morphological features of the developing rabbit's lung and validated the selected time intervals for the transcriptomic profiling. Cell cycle and embryo development, oxidative phosphorylation, and WNT signaling, among others, showed high gene expression in the pseudoglandular phase. Autophagy, epithelial morphogenesis, response to transforming growth factor ß, angiogenesis, epithelium/endothelial cells development, and epithelium/endothelial cells migration pathways appeared upregulated from the 28th day of gestation (early saccular phase), which represents the starting point of the premature rabbit model. Premature birth caused a significant dysregulation of the inflammatory response. TNF-responsive, NF-κB regulated genes were significantly upregulated at premature delivery and triggered downstream inflammatory pathways such as leukocyte activation and cytokine signaling, which persisted upregulated during the first week of life. Preterm birth also dysregulated relevant pathways for normal lung development, such as blood vessel morphogenesis and epithelial-mesenchymal transition. CONCLUSION: These findings establish the 28-day gestation premature rabbit as a suitable model for mechanistic and pharmacological studies in the context of BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Nascimento Prematuro , Animais , Gravidez , Feminino , Coelhos , Recém-Nascido , Humanos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Nascimento Prematuro/metabolismo , Hiperóxia/metabolismo , Transcriptoma , Células Endoteliais/metabolismo , Proteômica , Animais Recém-Nascidos , Pulmão/metabolismo , Inflamação/metabolismo
5.
Pediatr Res ; 93(3): 541-550, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35701606

RESUMO

BACKGROUND: The pathogenesis of neonatal meconium aspiration syndrome (MAS) involves meconium-induced lung inflammation and surfactant inactivation. Bronchoalveolar lavage (BAL) with diluted surfactant facilitates the removal of meconium. CHF5633, one of the most promising synthetic surfactants, is effective in neonatal respiratory distress syndrome. Here we investigated its efficacy via BAL in an experimental MAS model. METHODS: Experimental MAS was induced at birth in near-term newborn rabbits by intratracheal instillation of reconstituted human meconium. First, undiluted CHF5633 was compared with a porcine-derived surfactant (Poractant alfa) via intratracheal bolus (200 mg/kg). Second, the efficacy of BAL with diluted CHF5633 (5 mg/mL, 20 ml/kg) alone, or followed by undiluted boluses (100 or 300 mg/kg), was investigated. RESULTS: Meconium instillation caused severe lung injury, reduced endogenous surfactant pool, and poor survival. CHF5633 had similar benefits in improving survival and alleviating lung injury as Poractant alfa. CHF5633 BAL plus higher boluses exerted better effects than BAL or bolus alone in lung injury alleviation by reversing phospholipid pools and mitigating proinflammatory cytokine mRNA expression, without fluid retention and function deterioration. CONCLUSIONS: CHF5633 improved survival and alleviated meconium-induced lung injury, the same as Poractant alfa. CHF5633 BAL plus boluses was the optimal modality, which warrants further clinical investigation. IMPACT: To explore the efficacy of a synthetic surfactant, CHF5633, in neonatal lung protection comparing with Poractant alfa in a near-term newborn rabbit model with meconium-induced lung injury. Similar effects on improving survival and alleviating lung injury were found between CHF5633 and Poractant alfa. Optimal therapeutic effects were identified from the diluted CHF5633 bronchoalveolar lavage followed by its undiluted bolus instillation compared to the lavage or bolus alone regimens. Animals with CHF5633 lavage plus bolus regimen exerted neither substantial lung fluid retention nor lung mechanics deterioration but a trend of higher pulmonary surfactant-associated phospholipid pools.


Assuntos
Lesão Pulmonar , Síndrome de Aspiração de Mecônio , Pneumonia , Surfactantes Pulmonares , Feminino , Humanos , Coelhos , Recém-Nascido , Animais , Suínos , Mecônio , Animais Recém-Nascidos , Lesão Pulmonar/tratamento farmacológico , Síndrome de Aspiração de Mecônio/tratamento farmacológico , Irrigação Terapêutica , Surfactantes Pulmonares/farmacologia , Surfactantes Pulmonares/uso terapêutico , Fosfolipídeos/uso terapêutico , Tensoativos/uso terapêutico
6.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076992

RESUMO

We compared the performance and levofloxacin (Quinsair) lung deposition of three nebulisers commonly used in CF (I-Neb Advance, eFlow rapid, and LC Plus) with the approved nebuliser Zirela. The delivered dose, delivery rate, and aerosol particle size distribution (APSD) for each device were determined using the methods described in the Pharmacopeia. High-resolution computed tomography scans obtained from seven adult patients with mild CF were used to generate computer-aided, three-dimensional models of their airway tree to assess lung deposition using functional respiratory imaging (FRI). The eFlow rapid and the LC Plus showed poor delivery efficiencies due to their high residual volumes. The I-Neb, which only delivers aerosols during the inspiratory phase, achieved the highest aerosol delivery efficiency. However, the I-Neb showed the largest particle size and lowest delivery rate (2.9 mg/min), which were respectively associated with a high extrathoracic deposition and extremely long nebulisation times (>20 min). Zirela showed the best performance considering delivery efficiency (159.6 mg out of a nominal dose of 240 mg), delivery rate (43.5 mg/min), and lung deposition (20% of the nominal dose), requiring less than 5 min to deliver a full dose of levofloxacin. The present study supports the use of drug-specific nebulisers and discourages the off-label use of general-purpose devices with the present levofloxacin formulation since subtherapeutic lung doses and long nebulisation times may compromise treatment efficacy and adherence.


Assuntos
Fibrose Cística , Administração por Inalação , Adulto , Fibrose Cística/complicações , Humanos , Levofloxacino , Pulmão , Nebulizadores e Vaporizadores , Aerossóis e Gotículas Respiratórios
7.
Colloids Surf B Biointerfaces ; 217: 112678, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816885

RESUMO

Chagas disease is a neglected tropical disease affecting the American continent and also some regions of Europe. Benznidazole, approved by FDA, is a drug of choice but its poor aqueous solubility may lead to a low bioavailability and efficacy. Therefore, the aim of this study was to formulate nanoparticles of benznidazole for improving its solubility, dissolution and permeability. A Plackett-Burman design was applied to identify the effect of 5 factors over 4 responses. Then, a Central Composite design was applied to estimate the values of the most important factors leading to the best compromise between highest nanoprecipitation efficiency, drug solubility and lower particle size. The optimized nanoparticles were evaluated for in vitro drug release in biorelevant media, stability studies and transmission electron microscopy. Biocompatibility and permeability of nanoparticles were evaluated on the Caco-2 cell line. The findings of the optimization process indicated that concentration of drug and stabilizer influenced significantly the particle size while concentration of stabilizer and organic/water phase volume ratio mainly influenced the drug solubility. Stability studies suggested that benznidazole nanoparticles were stable after 12 months at different temperatures. Minimal interactions of those nanoparticles and mucin glycoproteins suggested favorable properties to address the intestinal mucus barrier. Cell viability studies confirmed the safety profile of the optimized formulation and showed an increased permeation through the Caco-2 cells. Thus, this study confirmed the suitability of the design of experiment and optimization approach to elucidate critical parameters influencing the quality of benznidazole nanoparticles, which could lead to a more efficient management of Chagas disease by oral route.


Assuntos
Doença de Chagas , Nanopartículas , Nitroimidazóis , Administração Oral , Disponibilidade Biológica , Células CACO-2 , Doença de Chagas/tratamento farmacológico , Humanos , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Tamanho da Partícula , Solubilidade
8.
Pharmaceutics ; 14(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890402

RESUMO

Thiazolidinediones (TZDs) are potent PPARγ agonists that have been shown to attenuate alveolar simplification after prolonged hyperoxia in term rodent models of bronchopulmonary dysplasia. However, the pulmonary outcomes of postnatal TZDs have not been investigated in preterm animal models. Here, we first investigated the PPARγ selectivity, epithelial permeability, and lung tissue binding of three types of TZDs in vitro (rosiglitazone (RGZ), pioglitazone, and DRF-2546), followed by an in vivo study in preterm rabbits exposed to hyperoxia (95% oxygen) to investigate the pharmacokinetics and the pulmonary outcomes of daily RGZ administration. In addition, blood lipids and a comparative lung proteomics analysis were also performed on Day 7. All TZDs showed high epithelial permeability through Caco-2 monolayers and high plasma and lung tissue binding; however, RGZ showed the highest affinity for PPARγ. The pharmacokinetic profiling of RGZ (1 mg/kg) revealed an equivalent biodistribution after either intratracheal or intraperitoneal administration, with detectable levels in lungs and plasma after 24 h. However, daily RGZ doses of 1 mg/kg did not improve lung function in preterm rabbits exposed to hyperoxia, and daily 10 mg/kg doses were even associated with a significant lung function worsening, which could be partially explained by the upregulation of lung inflammation and lipid metabolism pathways revealed by the proteomic analysis. Notably, daily postnatal RGZ produced an aberrant modulation of serum lipids, particularly in rabbit pups treated with the 10 mg/kg dose. In conclusion, daily postnatal RGZ did not improve lung function and caused dyslipidemia in preterm rabbits exposed to hyperoxia.

9.
Pharmaceutics ; 14(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631679

RESUMO

High-flow nasal cannula (HFNC) is a non-invasive respiratory support (NRS) modality to treat premature infants with respiratory distress syndrome (RDS). The delivery of nebulized surfactant during NRS would represent a truly non-invasive method of surfactant administration and could reduce NRS failure rates. However, the delivery efficiency of nebulized surfactant during HFNC has not been evaluated in vitro or in animal models of respiratory distress. We, therefore, performed first a benchmark study to compare the surfactant lung dose delivered by commercially available neonatal nasal cannulas (NCs) and HFNC circuits commonly used in neonatal intensive care units. Then, the pulmonary effect of nebulized surfactant delivered via HFNC was investigated in spontaneously breathing rabbits with induced respiratory distress. The benchmark study revealed the surfactant lung dose to be relatively low for both types of NCs tested (Westmed NCs 0.5 ± 0.45%; Fisher & Paykel NCs 1.8 ± 1.9% of a nominal dose of 200 mg/kg of Poractant alfa). The modest lung doses achieved in the benchmark study are compatible with the lack of the effect of nebulized surfactant in vivo (400 mg/kg), where arterial oxygenation and lung mechanics did not improve and were significantly worse than the intratracheal instillation of surfactant. The results from the present study indicate a relatively low lung surfactant dose and negligible effect on pulmonary function in terms of arterial oxygenation and lung mechanics. This negligible effect can, for the greater part, be explained by the high impaction of aerosol particles in the ventilation circuit and upper airways due to the high air flows used during HFNC.

10.
Adv Drug Deliv Rev ; 183: 114141, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149123

RESUMO

Mucus covers all wet epithelia and acts as a protective barrier. In the airways of the lungs, the viscoelastic mucus meshwork entraps and clears inhaled materials and efficiently removes them by mucociliary escalation. In addition to physical and chemical interaction mechanisms, the role of macromolecular glycoproteins (mucins) and antimicrobial constituents in innate immune defense are receiving increasing attention. Collectively, mucus displays a major barrier for inhaled aerosols, also including therapeutics. This review discusses the origin and composition of tracheobronchial mucus in relation to its (barrier) function, as well as some pathophysiological changes in the context of pulmonary diseases. Mucus models that contemplate key features such as elastic-dominant rheology, composition, filtering mechanisms and microbial interactions are critically reviewed in the context of health and disease considering different collection methods of native human pulmonary mucus. Finally, the prerequisites towards a standardization of mucus models in a regulatory context and their role in drug delivery research are addressed.


Assuntos
Pulmão , Muco , Sistemas de Liberação de Medicamentos , Humanos , Mucinas/análise , Mucinas/química , Muco/química , Reologia
11.
Pharmaceutics ; 13(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34959333

RESUMO

Pulmonary infections caused by Pseudomonas aeruginosa (PA) represent the leading cause of pulmonary morbidity in adults with cystic fibrosis (CF). In addition to tobramycin, colistin, and aztreonam, levofloxacin has been approved in Europe to treat PA infections. Nevertheless, no lung deposition data on inhaled levofloxacin are yet available. We conducted a Functional Respiratory Imaging (FRI) study to predict the lung deposition of levofloxacin in the lungs of patients with CF. Three-dimensional airway models were digitally reconstructed from twenty high-resolution computed tomography scans obtained from historical patients' records. Levofloxacin aerosols generated with the corresponding approved nebuliser were characterised according to pharmacopeia. The obtained data were used to inform a computational fluid dynamics simulation of levofloxacin lung deposition using breathing patterns averaged from actual CF patients' spirometry data. Levofloxacin deposition in the lung periphery was significantly reduced by breathing patterns with low inspiratory times and high inspiratory flow rates. The intrathoracic levofloxacin deposition percentages for moderate and mild CF lungs were, respectively, 37.0% ± 13.6 and 39.5% ± 12.9 of the nominal dose. A significant albeit modest correlation was found between the central-to-peripheral deposition (C/P) ratio of levofloxacin and FEV1. FRI analysis also detected structural differences between mild and moderate CF airways. FRI revealed a significant intrathoracic deposition of levofloxacin aerosols, which distributed preferentially to the lower lung lobes, with an influence of the deterioration of FEV1 on the C/P ratio. The three-dimensional rendering of CF airways also detected structural differences between the airways of patients with mild and moderate CF.

12.
Pharmaceutics ; 13(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204670

RESUMO

Direct lung administration of budesonide in combination with surfactant reduces the incidence of bronchopulmonary dysplasia. Although the therapy is currently undergoing clinical development, the lung distribution of budesonide throughout the premature neonatal lung has not yet been investigated. Here, we applied mass spectrometry imaging (MSI) to investigate the surfactant-assisted distal lung distribution of budesonide. Unlabeled budesonide was either delivered using saline as a vehicle (n = 5) or in combination with a standard dose of the porcine surfactant Poractant alfa (n = 5). These lambs were ventilated for one minute, and then the lungs were extracted for MSI analysis. Another group of lambs (n = 5) received the combination of budesonide and Poractant alfa, followed by two hours of mechanical ventilation. MSI enabled the label-free detection and visualization of both budesonide and the essential constituent of Poractant alfa, the porcine surfactant protein C (SP-C). 2D ion intensity images revealed a non-uniform distribution of budesonide with saline, which appeared clustered in clumps. In contrast, the combination therapy showed a more homogeneous distribution of budesonide throughout the sample, with more budesonide distributed towards the lung periphery. We found similar distribution patterns for the SP-C and budesonide in consecutive lung tissue sections, indicating that budesonide was transported across the lungs associated with the exogenous surfactant. After two hours of mechanical ventilation, the budesonide intensity signal in the 2D ion intensity maps dropped dramatically, suggesting a rapid lung clearance and highlighting the relevance of achieving a uniform surfactant-assisted lung distribution of budesonide early after delivery to maximize the anti-inflammatory and maturational effects throughout the lung.

13.
Adv Sci (Weinh) ; 8(12): e2004369, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165899

RESUMO

Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) - a crucial transcriptional regulator serving major functions in PA virulence - can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry-driven hit-to-lead optimization and in-depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter-gene with IC50 values as low as 200 and 11 × 10-9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI-tobramycin (Tob) combination against PA biofilms using a tailor-made squalene-derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32-fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker-mediated therapy against PA infections opening up avenues for preclinical development.


Assuntos
Biofilmes/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Quinolonas/agonistas , Percepção de Quorum/efeitos dos fármacos , Tobramicina/farmacologia , Animais , Modelos Animais de Doenças , Camundongos
14.
Drug Deliv Transl Res ; 11(4): 1752-1765, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34047967

RESUMO

The major pathogen found in the lungs of adult cystic fibrosis (CF) patients is Pseudomonas aeruginosa, which builds antibiotic-resistant biofilms. Pulmonary delivery of antibiotics by inhalation has already been proved advantageous in the clinic, but the development of novel anti-infective aerosol medicines is complex and could benefit from adequate in vitro test systems. This work describes the first in vitro model of human bronchial epithelial cells cultivated at the air-liquid interface (ALI) and infected with P. aeruginosa biofilm and its application to demonstrate the safety and efficacy of aerosolized anti-infective nanocarriers. Such a model may facilitate the translation of novel therapeutic modalities into the clinic, reducing animal experiments and the associated problems of species differences. A preformed biofilm of P. aeruginosa PAO1 was transferred to filter-grown monolayers of the human CF cell line (CFBE41o-) at ALI and additionally supplemented with human tracheobronchial mucus. This experimental protocol provides an appropriate time window to deposit aerosolized ciprofloxacin-loaded nanocarriers at the ALI. When applied 1 h post-infection, the nanocarriers eradicated all planktonic bacteria and reduced the biofilm fraction of the pathogen by log 6, while CFBE41o- viability and barrier properties were maintained. The here described complex in vitro model approach may open new avenues for preclinical safety and efficacy testing of aerosol medicines against P. aeruginosa lung infection.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Animais , Antibacterianos , Biofilmes , Ciprofloxacina , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Humanos
15.
Front Bioeng Biotechnol ; 9: 643491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968912

RESUMO

The deposition of pre-metered doses (i.e., defined before and not after exposition) at the air-liquid interface of viable pulmonary epithelial cells remains an important but challenging task for developing aerosol medicines. While some devices allow quantification of the deposited dose after or during the experiment, e.g., gravimetrically, there is still no generally accepted way to deposit small pre-metered doses of aerosolized drugs or pharmaceutical formulations, e.g., nanomedicines. Here, we describe a straightforward custom-made device, allowing connection to commercially available nebulizers with standard cell culture plates. Designed to tightly fit into the approximately 12-mm opening of either a 12-well Transwell® insert or a single 24-well plate, a defined dose of an aerosolized liquid can be directly deposited precisely and reproducibly (4.8% deviation) at the air-liquid interface (ALI) of pulmonary cell cultures. The deposited dose can be controlled by the volume of the nebulized solution, which may vary in a range from 20 to 200 µl. The entire nebulization-deposition maneuver is completed after 30 s and is spatially homogenous. After phosphate-buffered saline (PBS) deposition, the viability and barrier properties transepithelial electrical resistance (TEER) of human bronchial epithelial Calu-3 cells were not negatively affected. Straightforward in manufacture and use, the device enables reproducible deposition of metered doses of aerosolized drugs to study the interactions with pulmonary cell cultures grown at ALI conditions.

16.
Pharm Res ; 38(6): 1081-1092, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34002324

RESUMO

PURPOSE: The aim of this work was to formulate and characterize surfactant-free glibenclamide nanoparticles using Eudragit RLPO and polyethylene glycol as sole stabilizer. METHODS: Glibenclamide nanoparticles were obtained by nanoprecipitation and evaluated in terms of drug content, encapsulation efficiency, apparent saturation solubility, drug release profile, solid state and storage stability. The influence of different stirring speed on the particle size, size distribution and zeta potential of the nanoparticles was investigated. The nanoparticle biocompatibility and permeability were analyzed in vitro on Caco-2 cell line (clone HTB-37) and its interaction with mucin was also investigated. RESULTS: It was found that increasing the molecular weight of polyethylene glycol from 400 to 6000 decreased drug encapsulation, whereas the aqueous solubility and dissolution rate of the drug increased. Particle size of the nanoformulations, with and without polyethylene glycol, were between 140 and 460 nm. Stability studies confirmed that glibenclamide nanoparticles were stable, in terms of particle size, after 120 days at 4°C. In vitro studies indicated minimal interactions of glibenclamide nanoparticles and mucin glycoproteins suggesting favorable properties to address the intestinal mucus barrier. Cell viability studies confirmed the safety profile of these nanoparticles and showed an increased permeation through epithelial cells. CONCLUSION: Taking into consideration these findings, polyethylene glycol is a useful polymer for stabilizing these surfactant-free glibenclamide nanoparticles and represent a promising alternative to improve the treatment of non-insulin dependent diabetes.


Assuntos
Composição de Medicamentos/métodos , Glibureto/metabolismo , Hipoglicemiantes/metabolismo , Mucosa Intestinal/metabolismo , Nanopartículas/metabolismo , Tensoativos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Glibureto/administração & dosagem , Glibureto/química , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Mucosa Intestinal/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polímeros/administração & dosagem , Polímeros/química , Polímeros/metabolismo
17.
J Antimicrob Chemother ; 76(6): 1472-1479, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712824

RESUMO

BACKGROUND: Pulmonary infections associated with Pseudomonas aeruginosa can be life-threatening for patients suffering from chronic lung diseases such as cystic fibrosis. In this scenario, the formation of biofilms embedded in a mucus layer can limit the permeation and the activity of anti-infectives. OBJECTIVES: Native human pulmonary mucus can be isolated from endotracheal tubes, but this source is limited for large-scale testing. This study, therefore, aimed to evaluate a modified artificial sputum medium (ASMmod) with mucus-like viscoelastic properties as a surrogate for testing anti-infectives against P. aeruginosa biofilms. METHODS: Bacterial growth in conventional broth cultures was compared with that in ASMmod, and PAO1-GFP biofilms were imaged by confocal microscopy. Transport kinetics of three antibiotics, tobramycin, colistin, and ciprofloxacin, through native mucus and ASMmod were studied, and their activity against PAO1 biofilms grown in different media was assessed by determination of metabolic activity and cfu. RESULTS: PAO1(-GFP) cultured in human pulmonary mucus or ASMmod showed similarities in bacterial growth and biofilm morphology. A limited permeation of antibiotics through ASMmod was observed, indicating its strong barrier properties, which are comparable to those of native human mucus. Reduced susceptibility of PAO1 biofilms was observed in ASMmod compared with LB medium for tobramycin and colistin, but less for ciprofloxacin. CONCLUSIONS: These findings underline the importance of mucus as a biological barrier to antibiotics. ASMmod appears to be a valuable surrogate for studying mucus permeation of anti-infectives and their efficacy against PAO1 biofilms.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Humanos , Muco , Tobramicina/farmacologia
18.
Respir Res ; 22(1): 71, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637075

RESUMO

Delivery of medications to preterm neonates receiving non-invasive ventilation (NIV) represents one of the most challenging scenarios for aerosol medicine. This challenge is highlighted by the undersized anatomy and the complex (patho)physiological characteristics of the lungs in such infants. Key physiological restraints include low lung volumes, low compliance, and irregular respiratory rates, which significantly reduce lung deposition. Such factors are inherent to premature birth and thus can be regarded to as the intrinsic factors that affect lung deposition. However, there are a number of extrinsic factors that also impact lung deposition: such factors include the choice of aerosol generator and its configuration within the ventilation circuit, the drug formulation, the aerosol particle size distribution, the choice of NIV type, and the patient interface between the delivery system and the patient. Together, these extrinsic factors provide an opportunity to optimize the lung deposition of therapeutic aerosols and, ultimately, the efficacy of the therapy.In this review, we first provide a comprehensive characterization of both the intrinsic and extrinsic factors affecting lung deposition in premature infants, followed by a revision of the clinical attempts to deliver therapeutic aerosols to premature neonates during NIV, which are almost exclusively related to the non-invasive delivery of surfactant aerosols. In this review, we provide clues to the interpretation of existing experimental and clinical data on neonatal aerosol delivery and we also describe a frame of measurable variables and available tools, including in vitro and in vivo models, that should be considered when developing a drug for inhalation in this important but under-served patient population.


Assuntos
Broncodilatadores/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nebulizadores e Vaporizadores , Ventilação não Invasiva/métodos , Nascimento Prematuro/tratamento farmacológico , Mecânica Respiratória/efeitos dos fármacos , Administração por Inalação , Aerossóis , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Recém-Nascido , Ventilação não Invasiva/instrumentação , Nascimento Prematuro/diagnóstico , Nascimento Prematuro/fisiopatologia , Mecânica Respiratória/fisiologia
19.
Pediatr Res ; 90(3): 576-583, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33452472

RESUMO

BACKGROUND: In preterm infants, InSurE (Intubation-Surfactant-Extubation) and LISA (less invasive surfactant administration) techniques allow for exogenous surfactant administration while reducing lung injury associated with mechanical ventilation. We compared the acute pulmonary response and lung deposition of surfactant by LISA and InSurE in surfactant-depleted adult rabbits. METHODS: Twenty-six spontaneously breathing surfactant-depleted adult rabbits (6-7 weeks old) with moderate RDS and managed with nasal continuous positive airway pressure were randomized to 3 groups: (1) 200 mg/kg of surfactant by InSurE; (2) 200 mg/kg of surfactant by LISA; (3) no surfactant treatment (Control). Gas exchange and lung mechanics were monitored for 180 min. After that, surfactant lung deposition and distribution were evaluated monitoring disaturated-phosphatidylcholine (DSPC) and surfactant protein C (SP-C), respectively. RESULTS: No signs of recovery were found in the untreated animals. After InSurE, oxygenation improved more rapidly compared to LISA. However, at 180' LISA and InSurE showed comparable outcomes in terms of gas exchange, ventilation parameters, and lung mechanics. Neither DSPC in the alveolar pool nor SP-C signal distributions in a frontal lung section were significantly different between InSurE and LISA groups. CONCLUSIONS: In an acute setting, LISA demonstrated efficacy and surfactant lung delivery similar to that of InSurE in surfactant-depleted adult rabbits. IMPACT: Although LISA technique is gaining popularity, there are still several questions to address. This is the first study comparing LISA and InSurE in terms of gas exchange, ventilation parameters, and lung mechanics as well as surfactant deposition and distribution. In our animal study, three hours post-treatment, LISA method seems to be as effective as InSurE and showed similar surfactant lung delivery. Our findings provide some clarifications on a fair comparison between LISA and InSurE techniques, particularly in terms of surfactant delivery. They should reassure some of the concerns raised by the clinical community on LISA adoption in neonatal units.


Assuntos
Surfactantes Pulmonares/administração & dosagem , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Animais , Pressão Positiva Contínua nas Vias Aéreas , Modelos Animais de Doenças , Humanos , Coelhos , Respiração Artificial
20.
Biomacromolecules ; 22(2): 572-585, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33346660

RESUMO

Core-shell structured nanoparticles (NPs) render the simultaneous coloading capacity of both hydrophobic and hydrophilic drugs and may eventually enhance therapeutic efficacy. In this study, we employed a facile squalenoylation technology to synthesize a new amphiphilic starch derivative from partially oxidized starch, which self-assembled into core-shell starch NPs (StNPs) only at a squalenyl degree of substitution (DoS) of ∼1%. The StNPs characteristics could be tuned as the functions of the polymer molecular weight, DoS, and NPs concentration. The biopharmaceutical features of the StNPs, including colloidal stability, carrier properties, and biocompatibility, were carefully investigated. The interaction study between StNPs and mucin glycoproteins, the main organic component of mucus, revealed a moderate mucin interacting profile. Furthermore, the StNPs also showed good penetration through Pseudomonas aeruginosa biofilms. These results nominate StNPs as a versatile drug delivery platform with potential applications for mucosal drug delivery and the treatment of persistent infections.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Amido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA