Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Lett ; 812: 137366, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37393008

RESUMO

Within the hippocampus, the CA1 and dentate gyrus (DG) regions are considered the most and the least susceptible to damage by cerebral ischemia, respectively. In addition, it has been tested that rHuEPO exhibits neuroprotective properties. This work investigates the effect of different intranasal doses of rHuEPO, applied in different ischemic post-damage times in the DG, and the effect of the rHuEPO on astroglial reactivity after cerebral ischemia. Additionally, an effective dose for neuroprotection and an administration time was used to evaluate gene and protein expression changes of EPO and EPOR in the DG region. We observed a considerable loss of cells on the granular layer and an increased number of GFAP immunoreactive cells in this region only 72 h after the onset of ischemia/damage. When rHuEPO was administered, the number of morphologically abnormal cells and immunoreactivity decreased. In the analysis of protein and gene expression, there is no correlation between expression level of these molecules, although the rHuEPO amplifies the response to ischemia of EPO and EPOR gene for each evaluated time; in the case of the protein only at 2 h this effect was observed. We demonstrated the susceptibility of the DG to ischemia; so granular cells damage was observed, moreover of the astrocytic response, which is accompanied by molecular changes in signaling mediated by rHuEPO intranasal administration.


Assuntos
Isquemia Encefálica , Eritropoetina , Humanos , Administração Intranasal , Gliose/tratamento farmacológico , Eritropoetina/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Giro Denteado/metabolismo
2.
Front Neurosci ; 13: 118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837834

RESUMO

In vitro and in vivo experimental evidence has contributed important knowledge regarding the antiapoptotic effect mediated by EPO signaling in the damaged brain, particularly through different models with a hypoxic component. However, little emphasis has been placed on the effectiveness of rhEPO administration against cellular alterations caused by in vivo excitotoxicity or on the molecular mechanism that regulates this effect. In this study, we investigated the effects of a single dose of rhEPO on hippocampal damage induced by subcutaneous application of monosodium glutamate (MSG) on postnatal days 1, 3, 5 and 7 in neonatal rats. We found that a dose of 1000 IU/kg of b.w. administered 24 h after MSG had the greatest protective effect. In addition, we analyzed changes in gene expression, particularly in 3 key molecules involved in EPO-mediated signaling (EPO, EPOR and ßcR). We observed that the expression of EPO and EPOR was differentially modified at both the mRNA and protein levels under the evaluated conditions, while the expression of the ßcR gene was substantially increased. Our data suggest that a low dose of rhEPO is sufficient to induce cellular protection under these experimental conditions and that the molecular changes could be a positive feedback mechanism, mediated by reactive astrocytes in association with in vivo neuroprotective mechanisms.

3.
Neurosci Lett ; 552: 52-7, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23932891

RESUMO

Seizure susceptibility appears to be greater in males than females during the early developmental stages of the brain when the gamma-aminobutyric acid (GABA), acting through its GABA-A receptor, predominantly produces neuronal depolarization. GABA-mediated excitation has been observed when the NKCC1 (chloride importer) expression level is higher than KCC2 (chloride exporter). In this study, the relative protein expression of NKCC1 and KCC2 over ß-actin was evaluated in the hippocampus and entorhinal cortex of male and female rats during postnatal days (PND) 1, 3, 5, 7, 9, 11, 13 and 15 using Western blotting assays. For both cerebral regions in the females, the NKCC1/ß-actin expression ratio was constant during all evaluated ages, whereas the KCC2/ß-actin expression ratio increased gradually until reaching a maximal level at PND9 that was nearly three- and ten-fold higher in the hippocampus and entorhinal cortex, respectively, compared with the initial level. In males, the NKCC1/ß-actin expression ratio was constant during the first week, peaking almost three-fold higher than the initial level at PND9 in the hippocampus and at PND11 in the entorhinal cortex and then returning to the initial values at PND13, whereas the KCC2/ß-actin expression ratio increased gradually to reach a maximal and steady level at PND5, which were nearly two- and four-fold higher in the hippocampus and entorhinal cortex, respectively, compared with the intial level. In conclusion, the NKCC1/ß-actin and KCC2/ß-actin expression ratios displayed a specific expression profile for each gender and cerebral region, which could be related with the differences in seizure susceptibility observed between genders.


Assuntos
Córtex Entorrinal/metabolismo , Hipocampo/metabolismo , Caracteres Sexuais , Membro 2 da Família 12 de Carreador de Soluto/biossíntese , Simportadores/biossíntese , Actinas/biossíntese , Animais , Animais Recém-Nascidos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Ratos , Fatores de Tempo , Cotransportadores de K e Cl-
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA