Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(10): 2934-2936, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561195

RESUMO

SUMMARY: High-throughput sequencing of transfer RNAs (tRNA-Seq) is a powerful approach to characterize the cellular tRNA pool. Currently, however, analyzing tRNA-Seq datasets requires strong bioinformatics and programming skills. tRNAstudio facilitates the analysis of tRNA-Seq datasets and extracts information on tRNA gene expression, post-transcriptional tRNA modification levels, and tRNA processing steps. Users need only running a few simple bash commands to activate a graphical user interface that allows the easy processing of tRNA-Seq datasets in local mode. Output files include extensive graphical representations and associated numerical tables, and an interactive html summary report to help interpret the data. We have validated tRNAstudio using datasets generated by different experimental methods and derived from human cell lines and tissues that present distinct patterns of tRNA expression, modification and processing. AVAILABILITY AND IMPLEMENTATION: Freely available at https://github.com/GeneTranslationLab-IRB/tRNAstudio under an open-source GNU GPL v3.0 license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA de Transferência , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , Análise de Sequência de RNA/métodos
2.
Nucleic Acids Res ; 49(12): 7011-7034, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34125917

RESUMO

The modification of adenosine to inosine at the wobble position (I34) of tRNA anticodons is an abundant and essential feature of eukaryotic tRNAs. The expansion of inosine-containing tRNAs in eukaryotes followed the transformation of the homodimeric bacterial enzyme TadA, which generates I34 in tRNAArg and tRNALeu, into the heterodimeric eukaryotic enzyme ADAT, which modifies up to eight different tRNAs. The emergence of ADAT and its larger set of substrates, strongly influenced the tRNA composition and codon usage of eukaryotic genomes. However, the selective advantages that drove the expansion of I34-tRNAs remain unknown. Here we investigate the functional relevance of I34-tRNAs in human cells and show that a full complement of these tRNAs is necessary for the translation of low-complexity protein domains enriched in amino acids cognate for I34-tRNAs. The coding sequences for these domains require codons translated by I34-tRNAs, in detriment of synonymous codons that use other tRNAs. I34-tRNA-dependent low-complexity proteins are enriched in functional categories related to cell adhesion, and depletion in I34-tRNAs leads to cellular phenotypes consistent with these roles. We show that the distribution of these low-complexity proteins mirrors the distribution of I34-tRNAs in the phylogenetic tree.


Assuntos
Inosina/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Adenosina Desaminase/genética , Adesão Celular , Processos de Crescimento Celular , Linhagem Celular , Códon , Eucariotos/genética , Feminino , Células HEK293 , Humanos , Domínios Proteicos/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , RNA de Transferência/química , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA