Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 334: 122203, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37453680

RESUMO

De-icing road salt is a persistent emerging pollutant in temperate freshwater systems, where winter salting is necessary for road and pedestrian safety. Experts argue that road salts may increase salt-tolerant mosquito populations and, potentially, disease transmission in urban areas. Only adult females consume bloodmeals and may carry zoonotic diseases. While there are some species with naturally occurring male-biased sex ratios, it is unclear whether road salt differentially affects male and female mosquitoes to alter sex ratios. We hypothesized that road salts would masculinize emergence sex ratios and decrease female success because females may face higher exposure to stressors during their lengthy juvenile development compared to males. We measured mosquito emergence sex ratios of control (0 g/L added salt) and salt (4.5 g/L added salt) mesocosms in southern Ontario, Canada across the West Nile Virus season (May to October). We found female-biased sex ratios (i.e., <50% male frequency) in both 0 and 4.5 g/L. While mosquito abundance was significantly higher in 4.5 g/L compared to 0 g/L, road salt significantly increased the proportion of emerging males from 32.8% to 40.8% (Negative Binomial Model; Estimate ± SE = 0.283 ± 0.108; P = 0.009); mosquitoes shift their sex ratios from female-biased towards parity (50:50) in response to salt. Our study illustrates the need to evaluate sex-specific abundance in pollution-related mosquito population studies. By showing a shift toward more male mosquitoes emerging in high salinity compared to control treatments, our results suggest that road salts may have the potential to decrease female mosquito success and indirectly reduce disease transmission in cities.


Assuntos
Culicidae , Animais , Masculino , Feminino , Culicidae/fisiologia , Razão de Masculinidade , Sais , Estações do Ano , Ontário
2.
Insects ; 13(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135540

RESUMO

Species whose behaviour or morphology diverges from typical patterns can provide unique insights on the evolutionary forces that promote diversity. Darwin recognised that while elaborate sexually selected traits mostly occurred among males, in a few species females possess such traits. Some species from the subfamily Empidinae (Diptera: Empididae) are among the animals that are often invoked to illustrate female ornaments. Empidines include taxa that exhibit varying levels of female ornament expression; some species possess multiple, elaborate female-specific ornaments while others have fewer and more modest adornments, and many species are altogether lacking discernible sexual ornamentation. This continuous variation in display traits in the Empidinae provides unique opportunities to explore the causes and consequences of sexually selected ornament expression. Here, we review the literature on sexual selection and mating systems in these flies and synthesise the evidence for various evolutionary forces that could conceivably create this impressive morphological and behavioural diversity, despite evolutionary constraints on female ornament exaggeration that help to explain its general rarity among animals. We also suggest some aspects of diversity that remain relatively unexplored or poorly understood, and close by offering suggestions for future research progress in the evolutionary ecology of mating behaviour among empidine flies.

3.
Environ Entomol ; 51(2): 313-321, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35348654

RESUMO

The salinization of freshwater habitats from winter road salt application is a growing concern. Understanding how taxa exposed to road salt run-off respond to this salinity exposure across life history transitions will be important for predicting the impacts of increasing salinity. We show that Leucorrhinia intacta Hagen, 1861 (Odonata: Libellulidae) dragonflies are robust to environmentally relevant levels of salt pollution across intrinsically stressful life history transitions (hatching, growth, and metamorphosis). Additionally, we observed no carry-over effects into adult dragonfly morphology. However, in a multiple-stressor setting, we see negative interactive effects of warming and salinity on activity, and we found that chronically warmed dragonfly larvae consumed fewer mosquitoes. Despite showing relatively high tolerance to salinity individually, we expect that decreased dragonfly performance in multiple-stressor environments could limit dragonflies' contribution to ecosystem services such as mosquito pest control in urban freshwater environments.


Assuntos
Odonatos , Salinidade , Animais , Ecossistema , Insetos , Cloreto de Sódio/farmacologia
4.
Evolution ; 74(8): 1741-1754, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352568

RESUMO

Sexually selected ornaments are highly variable and the factors that drive variation in ornament expression are not always clear. Rare instances of female-specific ornament evolution (such as in some dance fly species) are particularly puzzling. While some evidence suggests that such rare instances represent straightforward reversals of sexual selection intensity, the distinct nature of trade-offs between ornaments and offspring pose special constraints in females. To examine whether competition for access to mates generally favors heightened ornament expression, we built a phylogeny and conducted a comparative analysis of Empidinae dance fly taxa that display female-specific ornaments. We show that species with more female-biased operational sex ratios in lek-like mating swarms have greater female ornamentation, and in taxa with more ornate females, male relative testis investment is increased. These findings support the hypothesis that ornament diversity in dance flies depends on female receptivity to mates, which is associated with contests for nutritious nuptial gifts provided by males. Moreover, our results suggest that increases in female receptivity lead to higher levels of sperm competition among males. The incidence of both heightened premating sexual selection on females and postmating selection on males contradicts assertions that sex roles are straightforwardly reversed in dance flies.


Assuntos
Comportamento Competitivo , Dípteros/genética , Filogenia , Caracteres Sexuais , Seleção Sexual , Animais , Dípteros/crescimento & desenvolvimento , Feminino , Masculino , Razão de Masculinidade , Testículo/crescimento & desenvolvimento
5.
J Evol Biol ; 32(9): 984-993, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31250502

RESUMO

Most hypotheses to explain nonrandom mating patterns invoke mate choice, particularly in species that display elaborate ornaments. However, conflicting selection pressures on traits can result in functional constraints that can also cause nonrandom mating patterns. We tested for functional load-lifting constraints during aerial copulation in Rhamphomyia longicauda, a species of dance fly that displays multiple extravagant female-specific ornaments that are unusual among sexual traits because they are under stabilizing selection. R. longicauda males provide females with a nuptial gift before engaging in aerial mating, and the male bears the entire weight of the female and nuptial gift for the duration of copulation. In theory, a male's ability to carry females and nuptial gifts could constrain pairing opportunities for the heaviest females, as reported for nonornamented dance flies. In concert with directional preferences for large females with mature eggs, such a load-lifting constraint could produce the stabilizing selection on female size previously observed in this species. We therefore tested whether wild-caught male R. longicauda collected during copulation were experiencing load-lift limitations by comparing the mass carried by males during copulation with the male's wing loading traits. We also performed permutation tests to determine whether the loads carried by males during copulation were lighter than expected. We found that heavier males are more often found mating with heavier females suggesting that whereas R. longicauda males do not experience a load-lift constraint, there is a strong relationship of assortative mating by mass. We suggest that active male mate choice for intermediately adorned females is more likely to be causing the nonrandom mating patterns observed in R. longicauda.


Assuntos
Dípteros/anatomia & histologia , Dípteros/fisiologia , Comportamento Sexual Animal , Animais , Peso Corporal , Dípteros/genética , Feminino , Masculino , Seleção Genética , Caracteres Sexuais
6.
Proc Biol Sci ; 285(1887)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232158

RESUMO

Sex-specific ornaments typically occur in males, but they can also develop in females. While there are several models concerning the evolution of male-specific ornaments, it is not clear how, or under what circumstances, those models apply to female-specific ornament evolution. Here, we present a manipulative field experiment that explores the theoretical 'trait space' of multiple female-specific ornaments to study how these unusual traits evolved. We measured the attractiveness of two female-specific ornaments (pinnate leg scales and inflatable abdominal sacs) in the dance fly Rhamphomyia longicauda in a wild mating swarm. We found significant directional preferences for larger ornaments of both types; however, variation in one of the ornaments (abdominal sacs) was almost three times more effective at improving attractiveness. The abdominal ornament was consistently effective in increasing attractiveness to males regardless of leg ornament expression, while leg ornament size was only effective if abdominal ornaments were very small. These results are consistent with predictions from a sexual conflict model of ornament expression in supporting the probable role of deception in the evolution of female-specific ornaments among dance flies. Sexual conflict can be an important force in generating elaborate sex-specific ornaments in females as well as males.


Assuntos
Dípteros/anatomia & histologia , Dípteros/fisiologia , Preferência de Acasalamento Animal , Abdome/anatomia & histologia , Animais , Evolução Biológica , Extremidades/anatomia & histologia , Feminino , Masculino , Seleção Genética , Caracteres Sexuais
7.
PLoS One ; 12(6): e0178364, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28609446

RESUMO

Maternally inherited bacterial endosymbionts are common in many arthropod species. Some endosymbionts cause female-biased sex ratio distortion in their hosts that can result in profound changes to a host's mating behaviour and reproductive biology. Dance flies (Diptera: Empidinae) are well known for their unusual reproductive biology, including species with female-specific ornamentation and female-biased lek-like swarming behaviour. The cause of the repeated evolution of female ornaments in these flies remains unknown, but is probably associated with female-biased sex ratios in individual species. In this study we assessed whether dance flies harbour sex ratio distorting endosymbionts that might have driven these mating system evolutionary changes. We measured the incidence and prevalence of infection by three endosymbionts that are known to cause female-biased sex ratios in other insect hosts (Wolbachia, Rickettsia and Spiroplasma) across 20 species of dance flies. We found evidence of widespread infection by all three symbionts and variation in sex-specific prevalence across the taxa sampled. However, there was no relationship between infection prevalence and adult sex ratio measures and no evidence that female ornaments are associated with high prevalences of sex-biased symbiont infections. We conclude that the current distribution of endosymbiont infections is unlikely to explain the diversity in mating systems among dance fly species.


Assuntos
Dípteros/microbiologia , Rickettsia/fisiologia , Spiroplasma/fisiologia , Simbiose , Wolbachia/fisiologia , Animais , Evolução Biológica , Dípteros/classificação , Feminino , Interações Hospedeiro-Patógeno , Modelos Lineares , Masculino , Reprodução , Razão de Masculinidade , Especificidade da Espécie
8.
J Exp Biol ; 214(Pt 10): 1740-7, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21525321

RESUMO

Sperm count evolution is driven by sexual selection, with an added role of selection on gamete resource allocation for hermaphrodite spermatogenesis. However, self-fertilization by hermaphrodites retards sexual selection and results in the evolution of reduced investment in sperm or pollen. In contrast to reproduction limited by female gametes (Bateman's Principle), self-fertilizing Caenorhabditis elegans hermaphrodites exhibit sperm-limited reproduction. Caenorhabditis elegans hermaphrodites are thought to experience a fitness trade-off between lifetime fecundity and generation time: longer sperm production decreases the risk of self-sperm depletion, but at the same time delays the onset of selfing and thus increases egg-to-egg generation time. Theory predicts that shorter larval development will favor lower sperm counts and longer development will favor more sperm. To investigate how developmental trajectories affect the evolution of sperm production, we performed experimental evolution by directly competing alleles controlling hermaphrodite sperm count, conducted under different environmental conditions that alter development time. Results are partially consistent with theory: rapid larval development generally favored alleles encoding production of few sperm. However, we identify some previously unrecognized simplifications of the theory and its application to our experimental system. In addition, we evaluated the generality of sperm limitation in C. elegans. Although optimal growth conditions yield sperm limitation, non-optimal conditions induce oocyte limitation, suggesting that this species might conform to Bateman's Principle under many natural settings. These findings demonstrate how developmental trajectories can shape the fitness landscape for the evolution of reproduction and sperm traits, even without sexual selection.


Assuntos
Evolução Biológica , Caenorhabditis elegans/fisiologia , Organismos Hermafroditas/fisiologia , Autofertilização/fisiologia , Espermatozoides/fisiologia , Temperatura , Análise de Variância , Animais , Feminino , Fertilidade/fisiologia , Funções Verossimilhança , Masculino , Preferência de Acasalamento Animal/fisiologia , Modelos Biológicos , Contagem de Espermatozoides
9.
BMC Evol Biol ; 11: 99, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21492473

RESUMO

BACKGROUND: Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode Caenorhabditis elegans, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success. RESULTS: We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners. CONCLUSIONS: We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that C. elegans harbors substantial heritable variation for traits contributing to male reproductive success. C. elegans provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits.


Assuntos
Caenorhabditis elegans/fisiologia , Fertilização/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Cruzamentos Genéticos , Fertilização/genética , Padrões de Herança , Masculino , Motilidade dos Espermatozoides , Espermatozoides/fisiologia
10.
Evolution ; 65(1): 52-63, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20731713

RESUMO

Populations of organisms separated by latitude provide striking examples of local adaptation, by virtue of ecological gradients that correlate with latitudinal position on the globe. Ambient temperature forms one key ecological variable that varies with latitude, and here we investigate its effects on the fecundity of self-fertilizing nematodes of the species Caenorhabditis briggsae that exhibits strong genetically based differentiation in association with latitude. We find that isogenic strains from a Tropical phylogeographic clade have greater lifetime fecundity when reared at extreme high temperatures and lower lifetime fecundity at extreme low temperatures than do strains from a Temperate phylogeographic clade, consistent with adaptation to local temperature regimes. Further, we determine experimentally that the mechanism underlying reduced fecundity at extreme temperatures differs for low versus high temperature extremes, but that the total number of sperm produced by the gonad is unaffected by rearing temperature. Low rearing temperatures result in facultatively reduced oocyte production by hermaphrodites, whereas extreme high temperatures experienced during development induce permanent defects in sperm fertility. Available and emerging genetic tools for this organism will permit the characterization of the evolutionary genetic basis to this putative example of adaptation in latitudinally separated populations.


Assuntos
Caenorhabditis/fisiologia , Organismos Hermafroditas/genética , Adaptação Fisiológica , Animais , Caenorhabditis/genética , Feminino , Fertilidade , Variação Genética , Geografia , Organismos Hermafroditas/fisiologia , Masculino , Reprodução , Seleção Genética , Espermatogênese , Temperatura
11.
Mol Biol Evol ; 26(6): 1199-234, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19289596

RESUMO

A fundamental problem in genome biology is to elucidate the evolutionary forces responsible for generating nonrandom patterns of genome organization. As the first metazoan to benefit from full-genome sequencing, Caenorhabditis elegans has been at the forefront of research in this area. Studies of genomic patterns, and their evolutionary underpinnings, continue to be augmented by the recent push to obtain additional full-genome sequences of related Caenorhabditis taxa. In the near future, we expect to see major advances with the onset of whole-genome resequencing of multiple wild individuals of the same species. In this review, we synthesize many of the important insights to date in our understanding of genome organization and function that derive from the evolutionary principles made explicit by theoretical population genetics and molecular evolution and highlight fertile areas for future research on unanswered questions in C. elegans genome evolution. We call attention to the need for C. elegans researchers to generate and critically assess nonadaptive hypotheses for genomic and developmental patterns, in addition to adaptive scenarios. We also emphasize the potential importance of evolution in the gonochoristic (female and male) ancestors of the androdioecious (hermaphrodite and male) C. elegans as the source for many of its genomic and developmental patterns.


Assuntos
Caenorhabditis elegans/genética , Evolução Molecular , Genes de Helmintos , Genoma Helmíntico , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA