Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Opt ; 28(6): 065003, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37325190

RESUMO

Significance: We present a fiberless, portable, and modular continuous wave-functional near-infrared spectroscopy system, Spotlight, consisting of multiple palm-sized modules-each containing high-density light-emitting diode and silicon photomultiplier detector arrays embedded in a flexible membrane that facilitates optode coupling to scalp curvature. Aim: Spotlight's goal is to be a more portable, accessible, and powerful functional near-infrared spectroscopy (fNIRS) device for neuroscience and brain-computer interface (BCI) applications. We hope that the Spotlight designs we share here can spur more advances in fNIRS technology and better enable future non-invasive neuroscience and BCI research. Approach: We report sensor characteristics in system validation on phantoms and motor cortical hemodynamic responses in a human finger-tapping experiment, where subjects wore custom 3D-printed caps with two sensor modules. Results: The task conditions can be decoded offline with a median accuracy of 69.6%, reaching 94.7% for the best subject, and at a comparable accuracy in real time for a subset of subjects. We quantified how well the custom caps fitted to each subject and observed that better fit leads to more observed task-dependent hemodynamic response and better decoding accuracy. Conclusions: The advances presented here should serve to make fNIRS more accessible for BCI applications.


Assuntos
Hemodinâmica , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Hemodinâmica/fisiologia , Mãos
2.
JMIR Med Inform ; 8(6): e21379, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32574150

RESUMO

[This corrects the article DOI: 10.2196/medinform.3793.].

3.
JMIR Med Inform ; 3(2): e17, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25863643

RESUMO

BACKGROUND: The amount of incoming data into physicians' offices is increasing, thereby making it difficult to process information efficiently and accurately to maximize positive patient outcomes. Current manual processes of screening for individual terms within long free-text documents are tedious and error-prone. This paper explores the use of statistical methods and computer systems to assist clinical data management. OBJECTIVE: The objective of this study was to verify and validate the use of a naive Bayesian classifier as a means of properly prioritizing important clinical data, specifically that of free-text radiology reports. METHODS: There were one hundred reports that were first used to train the algorithm based on physicians' categorization of clinical reports as high-priority or low-priority. Then, the algorithm was used to evaluate 354 reports. Additional beautification procedures such as section extraction, text preprocessing, and negation detection were performed. RESULTS: The algorithm evaluated the 354 reports with discrimination between high-priority and low-priority reports, resulting in a bimodal probability distribution. In all scenarios tested, the false negative rates were below 1.1% and the recall rates ranged from 95.65% to 98.91%. In the case of 50% prior probability and 80% threshold probability, the accuracy of this Bayesian classifier was 93.50%, with a positive predictive value (precision) of 80.54%. It also showed a sensitivity (recall) of 98.91% and a F-measure of 88.78%. CONCLUSIONS: The results showed that the algorithm could be trained to detect abnormal radiology results by accurately screening clinical reports. Such a technique can potentially be used to enable automatic flagging of critical results. In addition to accuracy, the algorithm was able to minimize false negatives, which is important for clinical applications. We conclude that a Bayesian statistical classifier, by flagging reports with abnormal findings, can assist a physician in reviewing radiology reports more efficiently. This higher level of prioritization allows physicians to address important radiologic findings in a timelier manner and may also aid in minimizing errors of omission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA