Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1385599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741893

RESUMO

Avian haemosporidian parasites are useful model organisms to study the ecology and evolution of parasite-host interactions due to their global distribution and extensive biodiversity. Detection of these parasites has evolved from microscopic examination to PCR-based methods, with the mitochondrial cytochrome b gene serving as barcoding region. However, standard PCR protocols used for screening and identification purposes have limitations in detecting mixed infections and generating phylogenetically informative data due to short amplicon lengths. To address these issues, we developed a novel genus-specific nested PCR protocol targeting avian haemosporidian parasites. The protocol underwent rigorous testing utilizing a large dataset comprising blood samples from Malagasy birds of three distinct Passeriformes families. Furthermore, validation was done by examining smaller datasets in two other laboratories employing divergent master mixes and different bird species. Comparative analyses were conducted between the outcomes of the novel PCR protocol and those obtained through the widely used standard nested PCR method. The novel protocol enables specific identification of Plasmodium, Haemoproteus (Parahaemoproteus), and Leucocytozoon parasites. The analyses demonstrated comparable sensitivity to the standard nested PCR with notable improvements in detecting mixed infections. In addition, phylogenetic resolution is improved by amplification of longer fragments, leading to a better understanding of the haemosporidian biodiversity and evolution. Overall, the novel protocol represents a valuable addition to avian haemosporidian detection methodologies, facilitating comprehensive studies on parasite ecology, epidemiology, and evolution.


Assuntos
Haemosporida , Reação em Cadeia da Polimerase , Infecções Protozoárias em Animais , Animais , Haemosporida/genética , Haemosporida/isolamento & purificação , Haemosporida/classificação , Reação em Cadeia da Polimerase/métodos , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/parasitologia , Doenças das Aves/parasitologia , Doenças das Aves/diagnóstico , Aves/parasitologia , Filogenia , Sensibilidade e Especificidade , Passeriformes/parasitologia , DNA de Protozoário/genética
2.
Parasitology ; 150(14): 1316-1329, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38087861

RESUMO

The nectarivorous common sunbird asity (Neodrepanis coruscans) is phylogenetically closely related to the frugivorous velvet asity (Philepitta castanea), yet it shares similar habitat and foraging behaviour as the Malagasy sunbirds (Cinnyris spp.). As ecological factors have been shown to influence blood parasite prevalence, it should be tested whether parasite abundance, prevalence and diversity of N. coruscans are more similar to the sunbirds than to its relative. Therefore, blood samples (n = 156) and smears (n = 60) were tested for different blood parasites (Haemosporida, trypanosomes, filarioid nematodes) using molecular and microscopic methods. High prevalence of haemosporidian parasites was observed in all bird taxa, with rates ranging from 23% in N. coruscans to 84.6% in C. notatus. The Malagasy Cinnyris spp. exhibited a high occurrence of mixed haemosporidian infections (>76%) with various specialized lineages. Within the Philepittidae family, no Haemoproteus infection was detected and just a few cases of mixed infections. Nectariniidae species predominantly had specialized haemosporidian lineages, while Philepittidae had infections mainly caused by generalist lineages. These findings emphasize the diverse range of blood parasites in Nectariniidae, while additionally highlighting the high diversity of trypanosomes and filarioid nematodes in Philepittidae. Additionally, several newly discovered haemosporidian lineages, Trypanosoma isolates and filarioid nematode isolates were identified. Notably, Philepittidae exhibited a lower prevalence of avian haemosporidian parasites compared to Nectariniidae, possibly due to potential resistance mechanisms. Despite N. coruscans sharing similar habitat and behavioural ecology with both Cinnyris spp., it closely resembles its relative, P. castanea, in all aspects of haemosporidian parasitism.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Doenças Parasitárias , Passeriformes , Plasmodium , Infecções Protozoárias em Animais , Animais , Filogenia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Passeriformes/parasitologia , Prevalência , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
3.
Parasitol Res ; 122(12): 2967-2975, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787788

RESUMO

Haemosporidian parasites that infect birds (Apicomplexa: Haemosporida) are blood parasites that require an invertebrate host (vector) and a vertebrate host for their lifecycle and cause malaria-like diseases. This group of parasites has provided valuable insights into host specificity, virulence, and parasite dispersal. Additionally, they have played a significant role in reshaping our understanding of the evolutionary history of apicomplexans. In order to accurately identify species and to address phylogenetic questions such as the timing of the haemosporidian radiation, the use of a sufficiently large genetic data set is crucial. However, acquiring this genetic data poses significant challenges. In this research, a sensitive nested PCR assay was developed. This assay allows for the easy amplification of complete mitochondrial genomes of haemosporidian parasites in birds, even during the chronic stage of infection. The effectiveness of this new nested PCR assay was evaluated using blood and tissue samples of birds with verified single parasite infections from previous studies. The approach involves amplifying four overlapping fragments of the mitochondrial genome and requires DNA extracts from single-infected samples. This method successfully amplified the complete mitochondrial genomes of 24 distinct haemosporidian parasite lineages found in various bird species. This data is invaluable for conducting phylogenetic analyses and accurately defining species. Furthermore, this study proposes the existence of at least 15 new haemosporidian parasite species based on the genetic information obtained. Data regarding pGRW04, previously categorized as Plasmodium relictum like pSGS1 and pGRW11, indicates that the pGRW04 lineage is actually a separate, hidden Plasmodium species.


Assuntos
Doenças das Aves , Genoma Mitocondrial , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Animais Selvagens/genética , Parasitos/genética , Filogenia , Doenças das Aves/parasitologia , Aves/parasitologia , Plasmodium/genética , Haemosporida/genética , Reação em Cadeia da Polimerase/veterinária , Infecções Protozoárias em Animais/parasitologia
4.
Parasitol Res ; 121(10): 2817-2829, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35939148

RESUMO

The development of new molecular methods has significantly improved the detection and identification of avian haemosporidian parasites (Plasmodium, Haemoproteus and Leucocytozoon) compared to microscopic examination. Very large numbers of previously hidden Haemosporida species of a wide range of avian hosts have thus been discovered in the last two decades. However, test parameters of the various detection methods remain largely unevaluated. In this study, the merits of microscopy, multiplex PCR, and nested PCR were compared to identify the infection status of three Malagasy bird species. A total of 414 blood samples of Hypsipetes madagascariensis, Foudia omissa and F. madagascariensis, as well as 147 blood smears, were examined for haemosporidian infection. Thirty-four lineages of haemosporidian parasites could be identified, of which six have been detected for the first time. Microscopy, multiplex and nested PCR showed differences in detection rate, most likely due to low parasitemia of chronically infected birds. The combination of both PCR methods yielded the best results. In particular, detection of multiple infections could be greatly improved and will enable more precise prevalence estimates of individual haemosporidian species in wild birds in the future.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Doenças das Aves/diagnóstico , Doenças das Aves/parasitologia , Aves , DNA de Protozoário/genética , Haemosporida/genética , Microscopia , Reação em Cadeia da Polimerase Multiplex , Filogenia , Plasmodium/genética , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
5.
Int J Parasitol ; 49(3-4): 199-210, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30471288

RESUMO

Previous studies about geographic patterns of species diversity of avian malaria parasites and others in the Order Haemosporida did not include the avian biodiversity hotspot Madagascar. Since there are few data available on avian malaria parasites on Madagascar, we conducted the first known large-scale molecular-based study to investigate their biodiversity. Samples (1067) from 55 bird species were examined by a PCR method amplifying nearly the whole haemosporidian cytochrome b gene (1063 bp). The parasite lineages found were further characterized phylogenetically and the degree of specialization was determined with a newly introduced host diversity index (Hd). Our results demonstrate that Madagascar indeed represents a biodiversity hotspot for avian malaria parasites as we detected 71 genetically distinct parasite lineages of the genera Plasmodium and Haemoproteus. Furthermore, by using a phylogenetic approach and including the sequence divergence we suspect that the detected haemosporidian lineages represent at least 29 groups i.e. proposed species. The here presented Hd values for each parasite regarding host species, genus and family strongly support previous works demonstrating the elastic host ranges of some avian parsites of the Order Haemosporida. Representatives of the avian parasite genera Plasmodium and Leucocytozoon tend to more often be generalists than those of the genus Haemoproteus. However, as demonstrated in various examples, there is a large overlap and single parasite lineages frequently deviate from this rule.


Assuntos
Biodiversidade , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves/parasitologia , Haemosporida/isolamento & purificação , Infecções por Protozoários/epidemiologia , Infecções por Protozoários/parasitologia , Animais , Haemosporida/classificação , Haemosporida/genética , Madagáscar/epidemiologia , Filogenia , Reação em Cadeia da Polimerase , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA