Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Trauma Acute Care Surg ; 83(4): 683-689, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28930961

RESUMO

BACKGROUND: Despite improvements in the management of severely injured patients, development of multiple organ dysfunction syndrome (MODS) remains a morbid complication of traumatic shock. One of the key attributes of MODS is a profound bioenergetics crisis, for which the mediators and mechanisms are poorly understood. We hypothesized that metabolic uncoupling using an experimental phosphoinositol-3 kinase (PI3-K) inhibitor, LY294002 (LY), may prevent mitochondrial abnormalities that lead to the generation of mitochondrial DNA (mtDNA) damage and the release of mtDNA damage-associated molecular patterns (DAMPs). METHODS: Sixteen swine were studied using LY, a nonselective PI3-K inhibitor. Animals were assigned to trauma only (TO, n = 3), LY drug only (LYO, n = 3), and experimental (n = 10), trauma + drug (LY + T) groups. Both trauma groups underwent laparotomy, 35% hemorrhage, severe ischemia-reperfusion injury, and protocolized resuscitation. A battery of hemodynamic, laboratory, histological, and bioenergetics parameters were monitored. Mitochondrial DNA damage was determined in lung, liver, and kidney using Southern blot analyses, whereas plasma mtDNA DAMP analysis used polymerase chain reaction amplification of a 200-bp sequence of the mtDNA D-loop region. RESULTS: Relative to control animals, H + I/R (hemorrhage and ischemia/reperfusion) produced severe, time-dependent decrements in hepatic, renal, cardiovascular, and pulmonary function accompanied by severe acidosis and lactate accumulation indicative of bioenergetics insufficiency. The H-I/R animals displayed prominent oxidative mtDNA damage in all organs studied, with the most prominent damage in the liver. Mitochondrial DNA damage was accompanied by accumulation of mtDNA DAMPs in plasma. Pretreatment of H + I/R animals with LY resulted in profound metabolic suppression, with approximately 50% decreases in O2 consumption and CO2 production. In addition, it prevented organ and bioenergetics dysfunction and was associated with a significant decrease in plasma mtDNA DAMPs to the levels of control animals. CONCLUSIONS: These findings show that H + I/R injury in anesthetized swine is accompanied by MODS and by significant mitochondrial bioenergetics dysfunction, including oxidative mtDNA damage and accumulation in plasma of mtDNA DAMPs. Suppression of these changes with the PI3-K inhibitor LY indicates that pharmacologically induced metabolic uncoupling may comprise a new pharmacologic strategy to prevent mtDNA damage and DAMP release and prevent or treat trauma-related MODS. LEVEL OF EVIDENCE: Therapeutic study, level III.


Assuntos
Cromonas/uso terapêutico , Dano ao DNA , DNA Mitocondrial , Inibidores Enzimáticos/uso terapêutico , Morfolinas/uso terapêutico , Insuficiência de Múltiplos Órgãos/prevenção & controle , Choque Traumático/terapia , Animais , Modelos Animais de Doenças , Metabolismo Energético , Insuficiência de Múltiplos Órgãos/etiologia , Choque Traumático/complicações , Suínos
2.
J Trauma Acute Care Surg ; 82(6): 1023-1029, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28301393

RESUMO

BACKGROUND: Massive transfusions are accompanied by an increased incidence of a particularly aggressive and lethal form of acute lung injury (delayed transfusion-related acute lung injury) which occurs longer than 24 hours after transfusions. In light of recent reports showing that mitochondrial (mt)DNA damage-associated molecular patterns (DAMPs) are potent proinflammatory mediators, and that their abundance in the sera of severely injured or septic patients is predictive of clinical outcomes, we explored the idea that mtDNA DAMPs are present in transfusion products and are associated with the occurrence of delayed transfusion-related acute lung injury. METHODS: We prospectively enrolled fourteen consecutive severely injured patients that received greater than three units of blood transfusion products and determined if the total amount of mtDNA DAMPs delivered during transfusion correlated with serum mtDNA DAMPs measured after the last transfusion, and whether the quantity of mtDNA DAMPs in the serum-predicted development of acute respiratory distress syndrome (ARDS). RESULTS: We found detectable levels of mtDNA DAMPs in packed red blood cells (3 ± 0.4 ng/mL), fresh frozen plasma (213.7 ± 65 ng/mL), and platelets (94.8 ± 69.2), with the latter two transfusion products containing significant amounts of mtDNA fragments. There was a linear relationship between the mtDNA DAMPs given during transfusion and the serum concentration of mtDNA fragments (R = 0.0.74, p < 0.01). The quantity of mtDNA DAMPs in serum measured at 24 hours after transfusion predicted the occurrence of ARDS (9.9 ± 1.4 vs. 3.3 ± 0.9, p < 0.01). CONCLUSION: These data show that fresh frozen plasma and platelets contain large amounts of extracellular mtDNA, that the amount of mtDNA DAMPs administered during transfusion may be a determinant of serum mtDNA DAMP levels, and that serum levels of mtDNA DAMPs after multiple transfusions may predict the development of ARDS. Collectively, these findings support the idea that mtDNA DAMPs in transfusion products significantly contribute to the incidence of ARDS after massive transfusions. LEVEL OF EVIDENCE: Prognostic study, level II; therapeutic study, level II.


Assuntos
Alarminas/efeitos adversos , Dano ao DNA , DNA Mitocondrial/metabolismo , Síndrome do Desconforto Respiratório/etiologia , Reação Transfusional , Adulto , Alarminas/sangue , Plaquetas/química , DNA Mitocondrial/sangue , Feminino , Humanos , Masculino , Plasma/química , Estudos Prospectivos , Ferimentos e Lesões/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA