Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochem Biophys Res Commun ; 711: 149914, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38608434

RESUMO

The steroid hormone ecdysone is essential for the reproduction and survival of insects. The hormone is synthesized from dietary sterols such as cholesterol, yielding ecdysone in a series of consecutive enzymatic reactions. In the insect orders Lepidoptera and Diptera a glutathione transferase called Noppera-bo (Nobo) plays an essential, but biochemically uncharacterized, role in ecdysteroid biosynthesis. The Nobo enzyme is consequently a possible target in harmful dipterans, such as disease-carrying mosquitoes. Flavonoid compounds inhibit Nobo and have larvicidal effects in the yellow-fever transmitting mosquito Aedes aegypti, but the enzyme is functionally incompletely characterized. We here report that within a set of glutathione transferase substrates the double-bond isomerase activity with 5-androsten-3,17-dione stands out with an extraordinary specific activity of 4000 µmol min-1 mg-1. We suggest that the authentic function of Nobo is catalysis of a chemically analogous ketosteroid isomerization in ecdysone biosynthesis.


Assuntos
Aedes , Aedes/enzimologia , Aedes/metabolismo , Animais , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Ecdisona/metabolismo , Proteínas de Insetos/metabolismo , Especificidade por Substrato , Esteroide Isomerases/metabolismo , Esteroide Isomerases/genética , Mosquitos Vetores/metabolismo , Cetosteroides/metabolismo , Cetosteroides/química
2.
Biomolecules ; 13(6)2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371556

RESUMO

Nobo is a glutathione transferase (GST) crucially contributing to ecdysteroid biosynthesis in insects of the orders Diptera and Lepidoptera. Ecdysone is a vital steroid hormone in insects, which governs larval molting and metamorphosis, and the suppression of its synthesis has potential as a novel approach to insect growth regulation and combatting vectors of disease. In general, GSTs catalyze detoxication, whereas the specific function of Nobo in ecdysteroidogenesis is unknown. We report that Nobo from the malaria-spreading mosquito Anopheles gambiae is a highly efficient ketosteroid isomerase catalyzing double-bond isomerization in the steroids 5-androsten-3,17-dione and 5-pregnen-3,20-dione. These mammalian ketosteroids are unknown in mosquitoes, but the discovered prominent catalytic activity of these compounds suggests that the unknown Nobo substrate in insects has a ketosteroid functionality. Aminoacid residue Asp111 in Nobo is essential for activity with the steroids, but not for conventional GST substrates. Further characterization of Nobo may guide the development of new insecticides to prevent malaria.


Assuntos
Anopheles , Malária , Animais , Mosquitos Vetores , Insetos , Esteroides , Mamíferos , Cetosteroides
3.
PLoS One ; 14(3): e0214160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30897163

RESUMO

Equine glutathione transferase A3-3 (EcaGST A3-3) belongs to the superfamily of detoxication enzymes found in all higher organisms. However, it is also the most efficient steroid double-bond isomerase known in mammals. Equus ferus caballus shares the steroidogenic pathway with Homo sapiens, which makes the horse a suitable animal model for investigations of human steroidogenesis. Inhibition of the enzyme has potential for treatment of steroid-hormone-dependent disorders. Screening of a library of FDA-approved drugs identified 16 out of 1040 compounds, which at 10 µM concentration afforded at least 50% inhibition of EcaGST A3-3. The most potent inhibitors, anthralin, sennoside A, tannic acid, and ethacrynic acid, were characterized by IC50 values in the submicromolar range when assayed with the natural substrate Δ5-androstene-3,17-dione.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Animais , Antralina/farmacologia , Ácido Etacrínico/farmacologia , Glutationa Transferase/metabolismo , Cavalos , Senosídeos/farmacologia , Especificidade por Substrato , Taninos/farmacologia
4.
J Cell Biochem ; 120(5): 7045-7055, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30484884

RESUMO

Glutathione (GSH) and enzymes related to this antioxidant molecule are often overexpressed in tumor cells and may contribute to drug resistance. Blockade of glutathione transferases (GSTs) has been proposed to potentiate the efficacy of chemotherapeutic drugs in cancer. The aim of this study was to evaluate the effect of chlorophyllin that has antioxidant properties, and also interferes with the activity of GST P1-1, on breast cancers in vitro and in vivo. The in vivo studies were conducted using an N-methyl- N-nitrosourea (MNU)-induced chemical carcinogenesis model in laboratory rats. DNA damage, GST activity, and GSH levels were determined in liver and tumor tissues. Treatment with chlorophyllin increased the GSH levels in the liver and significantly decreased DNA damage in the blood, liver, and tumor tissues. Even though tumorigenesis was delayed in rats receiving chlorophyllin before MNU injections, once the tumors emerged, the progression of tumor appeared to be faster than in the animals that received the carcinogen only. Out of nine breast cell lines, GST P1-1 expression was detected in MCF-12A, MDA-MB-231, and HCC38. Concomitant incubation with chlorophyllin and docetaxel did not significantly affect cell proliferation and viability. Chlorophyllin displayed genoprotective effects that initially delayed tumorigenesis. However, once the tumors were established, it may act as a promoter that facilitates tumor growth, potentially by a mechanism independent of cell proliferation and viability. Our results underline the pros and cons of antioxidant treatment in cancer, even if it has a capacity to inhibit GST P1-1.

5.
Artif Cells Nanomed Biotechnol ; 46(3): 510-517, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28503938

RESUMO

The glutathione transferases (GSTs) are a family of widely distributed Phase II detoxification enzymes. GST P1-1 is frequently overexpressed in rat and human tumours. It is suggested that overexpression of hGST P1-1 by human tumor cells may play a role in resistance to cancer chemotherapy. Hence, hGST P1-1 can be a promising target for cancer treatment. In this study, new hGST P1-1 inhibitors, 2-(4-substitutedphenyl/benzyl)-5-(4-trifluoromethylphenylsulphonamido) benzoxazole derivatives (Va-Vk) have been designed and synthesized. Surprisingly, in vitro hGST P1-1 enzyme inhibition studies demonstrated that all of the tested compounds except Vj had better activity than the reference drug EA and it is also correlated with the docking results. Additionally we compared the interactions with hGST P1-1 enzyme of newly synthesized compound Vh (bearing CF3 group) and previously synthesized compound 5f (bearing NO2 group). According to the docking results, compound Vh bound to the hGST P1-1 enzyme with a higher affinity compared to 5f. Therefore, we can consider that these data make a sense and can explain its higher activity. The compounds that obtained from this research could be used as scaffolds in design of new potent hGST P1-1 inhibitors useful in the treatment of the resistance of cancer chemotherapy.


Assuntos
Benzoxazóis , Inibidores Enzimáticos , Glutationa S-Transferase pi , Simulação de Acoplamento Molecular , Benzoxazóis/síntese química , Benzoxazóis/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa S-Transferase pi/química , Humanos
6.
Protein Eng Des Sel ; 30(8): 543-549, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28967959

RESUMO

Exploring the vicinity around a locus of a protein in sequence space may identify homologs with enhanced properties, which could become valuable in biotechnical and other applications. A rational approach to this pursuit is the use of 'infologs', i.e. synthetic sequences with specific substitutions capturing maximal sequence information derived from the evolutionary history of the protein family. Ninety-five such infolog genes of poplar glutathione transferase were synthesized and expressed in Escherichia coli, and the catalytic activities of the proteins determined with alternative substrates. Sequence-activity relationships derived from the infologs were used to design a second set of 47 infologs in which 90% of the members exceeded wild-type properties. Two mutants, C2 (V55I/E95D/D108E/A160V) and G5 (F13L/C70A/G122E), were further functionally characterized. The activities of the infologs with the alternative substrates 1-chloro-2,4-dinitrobenzene and phenethyl isothiocyanate, subject to different chemistries, were positively correlated, indicating that the examined mutations were affecting the overall catalytic competence without major shift in substrate discrimination. By contrast, the enhanced protein expressivity observed in many of the mutants were not similarly correlated with the activities. In conclusion, small libraries of well-defined infologs can be used to systematically explore sequence space to optimize proteins in multidimensional functional space.


Assuntos
Evolução Molecular Direcionada/métodos , Glutationa Transferase/genética , Proteínas de Plantas/genética , Populus/genética , Proteínas Recombinantes/genética , Escherichia coli/genética , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Populus/enzimologia , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
7.
Biochim Biophys Acta ; 1850(9): 1877-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26026470

RESUMO

BACKGROUND: The genome of poplar (Populus trichocarpa) encodes 81 glutathione transferases (GSTs) annotated in eight distinct classes. The tau class is considered the most versatile in the biotransformation of xenobiotics and is composed of 58 GSTs. Two of the enzymes, GSTU16 and GSTU45, have particular interest since their expression is induced by exposure of poplar tissues to 2,4,6-trinitrotoluene (TNT) and could potentially be involved in the metabolism of this toxic environmental contaminant. RESULTS: DNA encoding these GSTs was synthesized and the proteins were heterologously expressed in Escherichia coli and the purified enzymes were characterized. MAJOR CONCLUSIONS: GSTU16 assayed with a number of conventional GST substrates showed the highest specific activity (60µmolmin⁻¹ mg⁻¹) with phenethyl isothiocyanate, 150-fold higher than that with CDNB. By contrast, GSTU45 showed CDNB as the most active substrate (3.3µmolmin⁻¹ mg⁻¹) whereas all of the 16 alternative substrates tested yielded significantly lower activities. Homology modeling suggested that the aromatic residues Phe10 and Tyr107 in the active site of GSTU16 are promoting the high activity with PEITC and other substrates with aromatic side-chains. Nonetheless, TNT was a poor substrate for GSTU16 as well as for GSTU45 with a specific activity of 0.05nmolmin⁻¹ mg⁻¹ for both enzymes. GENERAL SIGNIFICANCE: GSTU16 and GSTU45 do not play a major role in the degradation of TNT in poplar.


Assuntos
Glutationa Transferase/metabolismo , Trinitrotolueno/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Indução Enzimática/efeitos dos fármacos , Glutationa Transferase/química , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Especificidade por Substrato
8.
ChemMedChem ; 9(5): 984-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24677708

RESUMO

Glutathione-S-transferases (GSTs) are enzymes involved in cellular detoxification by catalyzing the nucleophilic attack of glutathione (GSH) on the electrophilic center of numerous of toxic compounds and xenobiotics, including chemotherapeutic drugs. Human GST P1-1, which is known as the most prevalent isoform of the mammalian cytosolic GSTs, is overexpressed in many cancers and contributes to multidrug resistance by directly conjugating to chemotherapeutics. It is suggested that this resistance is related to the high expression of GST P1-1 in cancers, thereby contributing to resistance to chemotherapy. In addition, GSTs exhibit sulfonamidase activity, thereby catalyzing the GSH-mediated hydrolysis of sulfonamide bonds. Such reactions are of interest as potential tumor-directed prodrug activation strategies. Herein we report the design and synthesis of some novel sulfonamide-containing benzoxazoles, which are able to inhibit human GST P1-1. Among the tested compounds, 2-(4-chlorobenzyl)-5-(4-nitrophenylsulfonamido)benzoxazole (5 f) was found as the most active hGST P1-1 inhibitor, with an IC50 value of 10.2 µM, showing potency similar to that of the reference drug ethacrynic acid. Molecular docking studies performed with CDocker revealed that the newly synthesized 2-substituted-5-(4-nitrophenylsulfonamido)benzoxazoles act as catalytic inhibitors of hGST P1-1 by binding to the H-site and generating conjugates with GSH to form S-(4-nitrophenyl)GSH (GS-BN complex) via nucleophilic aromatic substitution reaction. The 4-nitrobenzenesulfonamido moiety at position 5 of the benzoxazole ring is essential for binding to the H-site and for the formation of the GST-mediated GSH conjugate.


Assuntos
Benzoxazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Benzoxazóis/síntese química , Benzoxazóis/química , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutationa Transferase/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
9.
Chem Biol Interact ; 205(1): 53-62, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23769903

RESUMO

OBJECTIVE: Glutathione transferase P1-1 (GST P1-1) is often overexpressed in tumor cells and is regarded as a contributor to their drug resistance. Inhibitors of GST P1-1 are expected to counteract drug resistance and may therefore serve as adjuvants in the chemotherapy of cancer by increasing the efficacy of cytostatic drugs. Finding useful inhibitors among compounds used for other indications would be a shortcut to clinical applications and a search for GST P1-1 inhibitors among approved drugs and other compounds was therefore conducted. METHODS: We tested 1040 FDA-approved compounds as inhibitors of the catalytic activity of purified human GST P1-1 in vitro. RESULTS: We identified chlorophyllide, merbromine, hexachlorophene, and ethacrynic acid as the most effective GST P1-1 inhibitors with IC50 values in the low micromolar range. For comparison, these compounds were even more potent in the inhibition of human GST A3-3, an enzyme implicated in steroid hormone biosynthesis. In distinction from the other inhibitors, which showed conventional inhibition patterns, the competitive inhibitor ethacrynic acid elicited strong kinetic cooperativity in the glutathione saturation of GST P1-1. Apparently, ethacrynic acid serves as an allosteric inhibitor of the enzyme. CONCLUSION AND PRACTICAL IMPLICATIONS: In their own right, the compounds investigated are less potent than desired for adjuvants in cancer chemotherapy, but the structures of the most potent inhibitors could serve as leads for the synthesis of more efficient adjuvants.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Clorofilídeos/farmacologia , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/química , Ácido Etacrínico/farmacologia , Glutationa Transferase/antagonistas & inibidores , Hexaclorofeno/farmacologia , Humanos , Cinética , Merbromina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteínas Recombinantes/antagonistas & inibidores , Estados Unidos , United States Food and Drug Administration
10.
J Mol Biol ; 425(9): 1509-14, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23399543

RESUMO

Conventional steady-state kinetic studies of the dimeric human glutathione transferase (GST) P1-1 do not reveal obvious deviations from Michaelis-Menten behavior. By contrast, engineering of the key residue Y50 of the lock-and-key motif in the subunit interface reveals allosteric properties of the enzyme. The low-activity mutant Y50C, characterized by 150-fold decreased kcat and 300-fold increased KM(GSH) values, displays an apparent Hill coefficient of 0.82±0.22. Chemical alkylation of the sulfhydryl group of Y50C by unnatural n-butyl or n-pentyl substitutions enhances the catalytic efficiency kcat/KM(GSH) to near the wild-type value but still yields Hill coefficients of 0.61±0.08 and 0.86±0.1, respectively. Thus, allosteric kinetic behavior is not dependent on low activity of the enzyme. On the other hand, S-cyclobutylmethyl-substituted Y50C, which also displays high catalytic efficiency, has a Hill coefficient of 0.99±0.11, showing that subtle differences in structure at the subunit interface influence the complex kinetic behavior. Furthermore, inhibition studies of native GST P1-1 using ethacrynic acid demonstrate that a ligand bound noncovalently to the wild-type enzyme also can elicit allosteric kinetic behavior. Thus, we conclude that the GST P1-1 structure has intrinsic allostery that becomes overt under some, but not all, ambient conditions.


Assuntos
Glutationa S-Transferase pi/química , Glutationa S-Transferase pi/metabolismo , Regulação Alostérica/genética , Sítio Alostérico/genética , Substituição de Aminoácidos/genética , Glutationa S-Transferase pi/antagonistas & inibidores , Humanos , Modelos Moleculares , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA