Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Polymers (Basel) ; 16(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000772

RESUMO

Six derivatives of poly-N-vinylcaprolactam (PNVCL) P1-P6 were synthesized via surfactant-free precipitation polymerization (SFPP) at 70 °C, with potassium persulfate (KPS) as the initiator. P5 and P6 were synthesized using the cross-linker N,N'-Methylenebisacrylamide (MBA). The conductivity was measured to monitor the polymerization process. The hydrodynamic diameters (HDs) and polydispersity indexes (PDIs) of aqueous dispersions of P1-P6 were determined using dynamic light scattering (DLS) and zeta potential (ZP) using electrophoretic mobilities. At 18 °C for P1-P6, the HDs (nm) were 428.32 ± 81.30 and PDI 0.31 ± 0.19, 528.60 ± 84.70 (PDI 0.42 ± 0,04), 425.96 ± 115.42 (PDI 0.56 ± 0.08), 440.34 ± 106.40 (PDI 0.52 ± 0.09), 198.39 ± 225.35 (PDI 0.40 ± 0.19), and 1201.52 ± 1318.05 (PDI 0.71 ± 0.30), the and ZPs were (mV) 0.90 ± 3.23, -4.46 ± 1.22, -6.44 ± 1.82, 0.22 ± 0.48, 0.18 ± 0.79, and -0.02 ± 0.39 for P1-P6, respectively. The lower critical solution temperature ranged from 27 to 29 °C. The polymers were characterized using the ATR-FTIR method. The study concluded that the physicochemical properties of the product were significantly affected by the initial reaction parameters. Polymers P1-P4 and P6 have potential for use as drug carriers for skin applications.

2.
Pharmaceutics ; 16(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931950

RESUMO

The high prevalence of acne, which affects nearly 85% of adolescents and young adults, underscores the importance of exploring new therapeutic solutions. The aim of the present study was to design a stable hydrogel formulation containing tetracycline hydrochloride (TC) in the presence of ethanol at various concentration levels. The antibiotic stability was assessed over a period of 84 days using the HPLC method. The rheological properties of the formulations and their microbiological activity were also evaluated. Hydrogels without ethanol and those containing 5% and 25% alcohol showed similar rheological properties and high stability of the antibiotic throughout the observation period. The formulation with the highest ethanol content of 50% differed significantly from the others in terms of rheological properties. Although the flow and viscosity curves were like those of the other formulations, the viscosity values were significantly lower. The stability of tetracycline in this formulation was also significantly lower, and by the 84th day of observation, the concentration of the drug had decreased to almost 45% of its initial content. The formulations containing the highest concentration of ethanol displayed the highest activity against the biofilm of the acne-causing agent, Cutibacterium acnes. The study demonstrated the possibility of developing stable and antimicrobial effective hydrogel formulations with tetracycline and ethanol as a substance enhancing drug penetration into the hair follicles.

3.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792213

RESUMO

The aim of the work was to determine important parameters of the course of π-A isotherms, which can determine the HLB (hydrophilic-lipophilic balance) value of surfactant mixtures with selected structural features, such as a straight or branched hydrocarbon chain and a double bond, using RSM (response surface methodology) computational methods. Mixtures of surfactants derived from fatty acids and sorbitan with specific HLB values were evaluated by Langmuir trough. The resulting elasticity modules (ELM) and molecules surfaces (SAM) were evaluated via response surface methodology and respective equations were calculated. The π-A isotherm determined in a Langmuir trough and the ELM and SAM parameters determined on the basis of this isotherm may be useful for determining the HLB of a fixed surfactant mixture. The RSM method used, in which ELM and SAM were assumed as two independent variables, can be a useful technique for tracking the influence of individual molecular characteristics on the hydrophilic-lipophilic properties of mixtures of surfactant compounds. Changes in HLB as a dependent variable can be described as a function of ELM and SAM.

4.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794546

RESUMO

Sodium hyaluronate (HA) is a natural polysaccharide. This biopolymer occurs in many tissues of living organisms. The regenerating, nourishing, and moisturizing properties as well as the rheological properties of HA enable its application in the pharmaceutical industry as a carrier of medicinal substances. The aim of this work was to assess the release of naproxen sodium (Nap) in the presence of lidocaine hydrochloride (Lid) from the biopolymer-based hydrogels and to determine the respective kinetic parameters of this process. The possible interaction between the HA polysaccharide carrier and the selected drugs was also investigated. Three hydrogels containing Nap and Lid with different concentrations of the biopolymer were prepared. The release of Nap was studied by employing USP apparatus 5. The infrared study and differential scanning calorimetry analysis of physical mixtures and dried formulations were performed. The highest amount of Nap was released from the formulation with the lowest concentration of the biopolymer. The most representative kinetic model that described the dissolution of Nap was obtained through the Korsmeyer-Peppas equation. The release rate constants were in the range of 1.0 ± 0.1 × 10-2 min-n-1.7 ± 0.1 × 10-2 min-n. Lid did not influence the dissolution of Nap from the formulations tested; however, in the desiccated samples of assessed formulations, the interaction between the polysaccharide and both drugs was observed.

5.
Polymers (Basel) ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611165

RESUMO

The aim of this study was to characterize and compare the zeta potential of particles sensitive to external thermal stimuli. Poly N-(isopropyl) acrylamide (PNIPA) was selected as the thermosensitive polymer with a volume phase transition temperature (VPTT) between 32 and 33 °C. The hydrodynamic diameter (DH) of the nanoparticles was measured by dynamic light scattering. Zeta potential (ZP) measurements were performed with the same instrument used for DH measurements. ZP measurements allow the prediction of the stability of colloidal systems in aqueous solutions. These measurements were combined with a pH study before and after the purification process of the particles. The ZP was measured to determine the electrostatic interactions between the particles, which can lead to particle aggregation and decrease their colloidal stability. The effect of the composition of the synthesized particles on the ZP was assessed. One of the most important factors influencing ZP is pH, especially in aqueous solutions. The initiator did not significantly affect the DH of the particles, but it did significantly affect the ZP. The synthesized particles were subjected to a visible radiation absorption study in the selected temperature range to determine the VPTT.

6.
Polim Med ; 53(2): 111-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054367

RESUMO

BACKGROUND: Many substances are used to increase the viscosity of eye drops and reduce their surface tension. Their function is to prolong the persistence of the product on the surface of the eyeball and to increase the bioavailability of the pharmacologically active ingredient. OBJECTIVES: To investigate the surface tension of substances added to the eye drops, with the main aim of modulating properties of the preparation. MATERIAL AND METHODS: Five substances contained in solutions proposed for the development of eye drops were studied: sodium hyaluronate macromolecular (H-Na W), sodium hyaluronate ultramolecular (H-Na UM), hyaluronic acid 4% (K-H), methylcellulose (MC), and polyacrylic acid (PA). The main method was to study the surface tension using the du Noüy ring tensiometer. RESULTS: The research presented in this paper shows the various effects of different eye drop ingredients on the surface tension of the solutions. The surface tension values of PA solutions are in the range of 48.89-56.03 mN/m, of MC in the range of 68.94-89.32 mN/m, of K-H 54.54-65.66 mN/m, of H-Na UM 67.18-70.97 mN/m, and of H-Na W 67.09-71.73 mN/m. CONCLUSIONS: The use of different polymers affects the surface tension of model solutions proposed for use in ophthalmic preparations. Compounds containing carboxyl groups and anionic polymers have a similar effect on reducing the surface tension of the solution as classical surfactant compounds.


Assuntos
Ácido Hialurônico , Polímeros , Soluções Oftálmicas , Tensão Superficial , Viscosidade
7.
Eur J Pharm Biopharm ; 193: 274-284, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924853

RESUMO

The modification of biomaterial surfaces has become increasingly relevant in the context of ongoing advancements in tissue engineering applications and the development of tissue-mimicking polymer materials. In this study, we investigated the layer-by-layer (LbL) deposition of polyelectrolyte multilayer protein reservoirs consisting of poly-l-lysine (PLL) and hyaluronic acid (HA) on the hydrophobic surface of poly(glycerol sebacate) (PGS) elastomer. Using the methods of isothermal titration calorimetry and surface plasmon resonance, we systematically investigated the interactions between the polyelectrolytes and evaluated the deposition process in real time, providing insight into the phenomena associated with film assembly. PLL/HA LbL films deposited on PGS showed an exceptional ability to incorporate bone morphogenetic protein-2 (BMP-2) compared to other growth factors tested, thus highlighting the potential of PLL/HA LbL films for osteoregenerative applications. The concentration of HA solution used for film assembly did not affect the thickness and topography of the (PLL/HA)10 films, but had a notable impact on the hydrophilicity of the PGS surface and the BMP-2 release kinetics. The release kinetics were successfully described using the Weibull model and hyperbolic tangent function, underscoring the potential of these less frequently used models to compare the protein release from LbL protein reservoirs.


Assuntos
Ácido Hialurônico , Polilisina , Ácido Hialurônico/química , Polilisina/química , Nanopartículas em Multicamadas , Polímeros , Polieletrólitos
8.
ADMET DMPK ; 11(3): 387-407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829319

RESUMO

Background and purpose: The aim of the work was to compare the interactions of three newly synthesized non-toxic starch derivatives, with varied anionic and non-ionic functional groups with methylene blue (MB) as a model cationic drug, and selection of starch derivative with highest affinity to the MB. Experimental approach: The native potato starch (SN), modified via acetylation (SM1), esterification and crosslinking (SM2) and crosslinking (SM3), was evaluated in MB adsorption studies and assessed by FTIR, PXRD, and DSC. Key results: The adsorption of MB on SM2 and SM3 matched the BET isotherm model, which confirmed physisorption on the low-porous surface. In the case of SM1, adsorption took place via electrostatic attraction between the heterogeneous adsorbent surface and the adsorbate, as demonstrated by the Freundlich plot. The FTIR confirmed vibrations assigned to N=C stretching bonds at 1600 cm-1 in the case of MB adsorbed on the SN and SM2. The most intense PXRD peaks belonged to SN and the least to SM2. In the DSC study, the thermal stability via ΔT was assessed, with SM2 of lowest ΔT value (179.8 °C). Conclusion: SM2 presented the best adsorption capacity, followed by SM3 and the weakest SM1. The interactions were confirmed in the adsorption studies and may reflect applications of the modified starches as drug carriers. In the FTIR study, a probable interaction between the OH- groups of SM2 and N+ of MB was revealed. The most amorphous structure was shown for SM2, which was correlated with the lowest thermal stability provided by the DSC study.

9.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834308

RESUMO

The aim of the study was to assess the effect of the synthesized antibacterial peptides: P2 (WKWK)2-KWKWK-NH2, P4 (C12)2-KKKK-NH2, P5 (KWK)2-KWWW-NH2, and P6 (KK)2-KWWW-NH2 on the physicochemical properties of a model biological membrane made of azolectin or lecithin. The Langmuir Wilhelmy method was used for the experiments. Based on the compressibility factor, it was determined that the monolayers formed of azolectin and peptides in the aqueous subphase are in the condensed liquid phase. At the boundary between the condensed and expanded liquid phases, there was a monolayer made of lecithin and P4, P5 or P6 in the aqueous subphase. In turn, the film consisting of lecithin alone (37.7 mN/m) and lecithin and P2 (42.6 mN/m) in the water subphase was in the expanded liquid phase. All peptides change, to varying degrees, the organization and packing of molecules in the monolayer, both those made of azolectin and of lecithin. The test results can be used for further research to design a system with the expected properties for specific organisms.


Assuntos
Lecitinas , Peptídeos , Peptídeos/farmacologia , Água/química , Propriedades de Superfície
10.
Polymers (Basel) ; 15(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299226

RESUMO

The thermal decomposition and kinetic parameters of four polymers, PN-1, PN-05, PN-01, and PN-005, were determined by thermogravimetry (TGA/DTG) under non-isothermal conditions. N-isopropylacrylamide (NIPA)-based polymers were synthesized by the surfactant-free precipitation polymerization (SFPP) with different concentrations of the anionic initiator potassium persulphate (KPS). Thermogravimetric experiments were carried out in the temperature range of 25-700 °C at four heating rates, 5, 10, 15, and 20 °C min-1, under a nitrogen atmosphere. Poly NIPA (PNIPA) showed three stages of mass loss during the degradation process. The thermal stability of the test material was determined. Activation energy values were estimated using Ozawa, Kissinger, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Friedman (FD) methods.

11.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982680

RESUMO

The properties of sodium hyaluronate (HA), such as hygroscopicity, flexibility, the ability to form hydrogels, as well as biocompatibility and biodegradability, are beneficial for the applications in pharmaceutical technology, cosmetics industry, and aesthetic medicine. The aim of this study was to prepare HA-based hydrogels doped with active pharmaceutical ingredient (API): a cationic drug-lidocaine hydrochloride or anionic drug-sodium. The interaction between the carrier and the implemented active pharmaceutical substances was evaluated in prepared systems by applying viscometric measurements, performing release tests of the drug from the obtained formulations, and carrying out FTIR and DSC. The data from release studies were analyzed using the zero-, first-, and second-order kinetics and Higuchi, Korsmeyer-Peppas, and Hixon-Crowell models. The respective kinetic parameters: the release rate constants, the half-release time and, in the case of the Korsmeyer-Peppas equation, the n parameter were calculated. The variability between the obtained release profiles was studied by calculating the difference (f1) and the similarity factor (f2) as well as employing statistical methods. It was revealed that the incorporation of the drugs resulted in an increase in the viscosity of the hydrogels in comparison to the respective drug-free preparations. The dissolution study showed that not entire amount of the added drug was released from the formulation, suggesting an interaction between the carrier and the drug. The FTIR and DSC studies confirmed the bond formation between HA and both medicinal substances.


Assuntos
Hidrogéis , Tecnologia Farmacêutica , Preparações de Ação Retardada , Tecnologia Farmacêutica/métodos , Composição de Medicamentos , Cátions , Cinética , Solubilidade
12.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901749

RESUMO

The aim of the study was to evaluate the effect of the peptide structure (WKWK)2-KWKWK-NH2, P4 (C12)2-KKKK-NH2, P5 (KWK)2-KWWW-NH2, P6 (KK)2-KWWW-NH2 on their physicochemical properties. The thermogravimetric method (TG/DTG) was used, which made it possible to observe the course of chemical reactions and phase transformations occurring during the heating of solid samples. Based on the DSC curves, the enthalpy of the processes occurring in the peptides was determined. The influence of the chemical structure of this group of compounds on their film-forming properties was determined using the Langmuir-Wilhelmy trough method and was followed by molecular dynamics simulation. Evaluated peptides showed high thermal stability and the first significant mass loss occurred only at about 230 °C and 350 °C. The analysis of the compressibility coefficient of individual peptides indicates that all formed peptide monolayers were in the expanded liquid phase. Their maximum compressibility factor was less than 50.0 mN/m. Its highest value of 42.7 mN/m was achieved in a monolayer made of P4. The results obtained in molecular dynamic simulation indicate that non-polar side chains played an important role in the properties of the P4 monolayer, and the same applies to P5, except that a spherical effect was observed here. A slightly different behavior was observed for the P6 and P2 peptide systems, where the type of amino acids present had an influence. The obtained results indicate that the structure of the peptide affected its physicochemical and layer-forming properties.


Assuntos
Peptídeos , Termodinâmica
13.
Pharmaceutics ; 15(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36839709

RESUMO

The problem of drug delivery often concentrates on the prolongation of drug activity. Application of natural polymers which are biodegradable and inexpensive is in the interest of many researchers. The aim of this study was the application of newly synthesized starch derivatives as potential functional excipients proposed for hydrophilic gel with lidocaine hydrochloride (LH) to prolong drug release from the hydrogel matrix. In our study, we investigated the effect of starch modified with citric acid on the release kinetics of LH using UV-VIS and Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), as well as viscosity and pH measurements. We demonstrated the effectiveness of citric-acid-modified starch in prolonging the release of LH from methylcellulose gel.

14.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768998

RESUMO

Due to its high instability and rapid degradation under adverse conditions, tetracycline hydrochloride (TC) can cause difficulties in the development of an effective but stable formulation for the topical treatment of acne. The aim of the following work was to propose a hydrogel formulation that would ensure the stability of the antibiotic contained in it. Additionally, an important property of the prepared formulations was the activity of the alcoholamines contained in them against the components of the model sebum. This feature may help effectively cleanse the hair follicles in the accumulated sebum layer. A series of formulations with varying proportions of anionic polymer and alcoholamine and containing different polymers have been developed. The stability of tetracycline hydrochloride contained in the hydrogels was evaluated for 28 days by HPLC analysis. Formulations containing a large excess of TRIS alcoholamine led to the rapid degradation of TC from an initial concentration of about 10 µg/mL to about 1 µg/mL after 28 days. At the same time, these formulations showed the highest activity against artificial sebum components. Thanks to appropriately selected proportions of the components, it was possible to develop a formulation that assured the stability of tetracycline for ca. one month, while maintaining formulation activity against the components of model sebum.


Assuntos
Sebo , Tetraciclina , Tetraciclina/farmacologia , Tetraciclina/metabolismo , Sebo/química , Sebo/metabolismo , Hidrogéis/metabolismo , Antibacterianos/metabolismo , Pele , Polímeros/metabolismo
15.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499140

RESUMO

The knowledge of interactions between different molecules is undoubtedly the driving force of all contemporary biomedical and biological sciences. Chemical biology/biological chemistry has become an important multidisciplinary bridge connecting the perspectives of chemistry and biology to the study of small molecules/peptidomimetics and their interactions in biological systems. Advances in structural biology research, in particular linking atomic structure to molecular properties and cellular context, are essential for the sophisticated design of new medicines that exhibit a high degree of druggability and very importantly, druglikeness. The authors of this contribution are outstanding scientists in the field who provided a brief overview of their work, which is arranged from in silico investigation through the characterization of interactions of compounds with biomolecules to bioactive materials.


Assuntos
Biologia Molecular
16.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433069

RESUMO

The highly inert surface of polyester micro- and nano- drug carriers is a challenging substrate for further modification. The presence of surface moieties suitable for macromolecule coupling is crucial in the development of targeted drug delivery systems. Among available methods of surface activation, those based on adsorption of charged macromolecules may be carried out in mild conditions. In this work, alendronate-loaded microcores of three polyesters: poly-ε-caprolactone (PCL), poly(l-lactide-co-ε-caprolactone) (PLA-co-PCL) and poly(lactic-co-glycolic acid) (PLGA) were coated with three polyelectrolyte shells composed of chitosan/heparin (CHIT/HEP), polyallylamine/heparin (PAH/HEP), and polyethyleneimine/heparin (PEI/HEP) via the layer-by-layer method. Subsequently, the feasibility of model protein immobilization on obtained shells was assessed. Electrokinetic potential measurements confirmed the possibility of deposition of all investigated coating variants, and a positive correlation between initial core ζ potential and intensity of charge alterations after deposition of subsequent layers was identified. PEI/HEP assembly was stable in physiological-like conditions, while PAH/HEP multilayers disassembled in presence of phosphate ions, and CHIT/HEP shell showed limited stability in pH 7.4. Fluorescence assays of fluorescein tagged lysozyme surface coupled via ethylcarbodiimide hydrochloride/N-Hydroxysuccinimide (EDC/NHS) click reaction with all shell variants indicated satisfying reaction efficiency. Poly-ε-caprolactone cores coated with CHIT/HEP tetralayer were selected as suitable for model IgG surface immobilization. Antibodies immobilized on the shell surface exhibited a moderate degree of affinity to fluorescent IgG binding protein.

17.
Polymers (Basel) ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365721

RESUMO

Thermosensitive copolymers P1-P5 of N-isopropylacrylamide (NIPA) and poly(ethylene glycol) methyl ether methacrylates (PEGMEMs) were synthesized via surfactant-free precipitation polymerization (SFPP) using ammonium persulfate (APS) at 70 °C. The polymerization course was evaluated by the conductivity. The hydrodynamic diameters and the polydispersity indexes (PDI) of P1-P5 in the 18-45 °C range, which were assessed via dynamic light scattering (DLS), were at 18° (nm): 26.07 ± 0.54 (PDI 0.65 ± 0.03), 68.00 ± 1.10 (PDI 0.56 ± 0,02), 45.12 ± 0.57 (PDI 0.51 ± 0.03), 62.78 ± 0.40 (PDI 0.53 ± 0.003), and 92.95 ± 1.56 (PDI 0.60 ± 0.04), respectively. The lower critical solution temperatures ranged from 31 to 33 °C. The electrophoretic mobilities estimated the zeta potential in the 18-45 °C range, and at 18 °C, they were (mV): -4.64 ± 1.30, -6.91 ± 2.67, -5.85 ± 3.17, -2.28 ± 0.30, and -3.60 ± 0.96 for P1-P5, respectively. The polymers were characterized by Attenuated Total Reflectance Fourier-Transform Infrared spectroscopy (ATR-FTIR), H nuclear magnetic resonance (1H NMR), thermogravimetric analysis (TGA/DTA), Differential Scanning Calorimetry (DSC), and powder X-ray diffraction analysis (PXRD). Stable amorphous polymers were obtained. We conclude that the length of the co-monomer chain nonlinearly influences the properties of the obtained thermosensitive polymer nanostructures.

18.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35955889

RESUMO

(1) Background: Depending on the type of hydrophilic polymer used, different types of hydrogels may be chemically stable or may degrade and eventually disintegrate, or dissolve upon exposure to sunlight. Many over-the-counter medications are now stored with a limited control of temperature, humidity and lighting. Therefore, in this study, the photostability of a gel made of cross-linked polyacrylic acid (PA), methylcellulose (MC) and aristoflex (AV) was assessed, and the interaction between the polymers used and ascorbic acid and its ethylated derivative was investigated. (2) Methods: The samples were continuously irradiated at constant temperature for six hours. The stability of the substance incorporated into the gels was assessed using a UV-Vis spectrophotometer. FTIR-ATR infrared spectroscopy was used to measure changes during the exposure. (3) Results: Ascorbic acid completely decomposed between the first and second hours of illumination in all samples. The exception is the preparation based on polyacrylic acid with glycerol, in which the decomposition of ascorbic acid slowed down significantly. After six hours of irradiation, the ethylated ascorbic acid derivative decomposed in about 5% for the polyacrylic acid-based gels and aristoflex, and in the methylcellulose gel it decomposed to about 2%. In the case of ascorbic acid, the most stable formulation was a gel based on polyacrylic acid and polyacrylic acid with glycerol, and in the case of the ethyl derivative, a gel based on methylcellulose. (4) Conclusions: The experiment showed significant differences in the decomposition rate of both compounds, resulting from their photostability and the polymer used in the hydrogel.


Assuntos
Ácido Ascórbico , Glicerol , Ácido Ascórbico/química , Hidrogéis/química , Luz , Metilcelulose/química , Polímeros/química
19.
Pharmaceutics ; 13(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34575457

RESUMO

Tetracyclines, as beneficial antimicrobial factors in both local and systemic therapy, are characterized by high instability. The aim of the study was the development of the influence of hydrogel formulation on the tetracycline hydrochloride (TC) level under varying storage conditions. The HPLC, XPRD as well as SEM and macroscopic observations were involved in the study. The TC concentration decreased within ca. two months from 9.37 µg/mL to 4.41 µg/mL in the case of the photoprotected TC solution stored at 23 °C, whereas the decrease in storage temperature did not improve the final level of TC. In the presence of AMPD, the TC level in aqueous solution decreased drastically to ca. 1 µg/mL. Application of a polyacrylic acid derivative enabled conservation of the TC level through the ca. two months. Thus, the use of alcoholamine in the preparation of the TC hydrogel may result in the development of a therapeutic product with a dual action against acne, including antimicrobial activity and saponification of free fatty acids deposited in the follicles.

20.
Polim Med ; 51(1): 25-32, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34505758

RESUMO

BACKGROUND: The pH of the skin surface is usually between 5.4 and 5.9 and functions as a barrier against bacteria and fungi; thus, the composition of the topically applied drug form may be of high importance for proper medication. OBJECTIVES: To evaluate the influence of the measurement conditions in aqueous solutions of ointments, creams, and gels, which include polymeric components, on the pH and conductivity results. MATERIAL AND METHODS: The pH and electrolytic conductivity of aqueous dispersions of commercially available ointments, creams and gels were tested and compared to reference vehicles. RESULTS: The results of the dilution method measurements of the pH and electrolytic conductivity of the ointment preparations are highly diverse, ranging from 5.88 to 6.27, whereas the reference pH for Unguentum simplex was between 5.40 and 5.43. Furthermore, the measurements of the pH and electrolytic conductivity with the dilution method for creams did not provide repeatable results with a small sample size, and the pH of commercial preparations was in the range between 5.79 and 6.37, compared to the reference pH of 5.23-5.46. However, the dilution method for measurements of the pH and electrolytic conductivity was suitable for hydrogel preparations and the obtained results were repeatable in the range of 6.11-6.90, while the reference preparations were in the range of 5.19-5.62. CONCLUSIONS: Evaluation methods of the electrolytic conductivity and pH of the preparations applied on the skin should be further evaluated; however, the pH of the commercial preparation seems to differ from the physiological skin pH, which covers the range of reference preparations.


Assuntos
Excipientes , Polímeros , Géis , Concentração de Íons de Hidrogênio , Pomadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA