Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 63(1): e23209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37870842

RESUMO

Smooth muscle tumors are the most common mesenchymal tumors of the female genital tract, including the vulva. Since vulvar smooth muscle tumors are rare, our understanding of them compared to their uterine counterparts continues to evolve. Herein, we present two cases of morphologically distinct myxoid epithelioid smooth muscle tumors of the vulva with novel MEF2D::NCOA2 gene fusion. The tumors involved 24 and 37-year-old women. Both tumors presented as palpable vulvar masses that were circumscribed, measuring 2.8 and 5.1 cm in greatest dimension. Histologically, they were composed of epithelioid to spindle-shaped cells with minimal cytologic atypia and prominent myxoid matrix. Rare mitotic figures were present (1-3 mitotic figures per 10 high-power field (HPF)), and no areas of tumor necrosis were identified. By immunohistochemistry, the neoplastic cells strongly expressed smooth muscle actin, calponin, and desmin, confirming smooth muscle origin. Next-generation sequencing identified identical MEF2D::NCOA2 gene fusions. These two cases demonstrate that at least a subset of myxoid epithelioid smooth muscle tumors of the vulva represent a distinct entity characterized by a novel MEF2D::NCOA2 gene fusion. Importantly, recognition of the distinct morphologic and genetic features of these tumors is key to understanding the biological potential of these rare tumors.


Assuntos
Tumor de Músculo Liso , Adulto , Feminino , Humanos , Adulto Jovem , Biomarcadores Tumorais/genética , Fusão Gênica , Fatores de Transcrição MEF2/genética , Coativador 2 de Receptor Nuclear/genética , Tumor de Músculo Liso/patologia , Vulva/patologia
2.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29728391

RESUMO

The germination of Bacillus spores is triggered by certain amino acids and sugar molecules which permeate the outermost layers of the spore to interact with receptor complexes that reside in the inner membrane. Previous studies have shown that mutations in the hexacistronic gerP locus reduce the rate of spore germination, with experimental evidence indicating that the defect stems from reduced permeability of the spore coat to germinant molecules. Here, we use the ellipsoid localization microscopy technique to reveal that all six Bacillus cereus GerP proteins share proximity with cortex-lytic enzymes within the inner coat. We also reveal that the GerPA protein alone can localize in the absence of all other GerP proteins and that it has an essential role for the localization of all other GerP proteins within the spore. Its essential role is also demonstrated to be dependent on SafA, but not CotE, for localization, which is consistent with an inner coat location. GerP-null spores are shown also to have reduced permeability to fluorescently labeled dextran molecules compared to wild-type spores. Overall, the results support the hypothesis that the GerP proteins have a structural role within the spore associated with coat permeability.IMPORTANCE The bacterial spore coat comprises a multilayered proteinaceous structure that influences the distribution, survival, and germination properties of spores in the environment. The results from the current study are significant since they increase our understanding of coat assembly and architecture while adding detail to existing models of germination. We demonstrate also that the ellipsoid localization microscopy (ELM) image analysis technique can be used as a novel tool to provide direct quantitative measurements of spore coat permeability. Progress in all of these areas should ultimately facilitate improved methods of spore control in a range of industrial, health care, and environmental sectors.


Assuntos
Bacillus cereus/genética , Proteínas de Bactérias/genética , Genes Bacterianos/genética , Óperon/genética , Esporos Bacterianos/genética , Bacillus cereus/citologia , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , Permeabilidade
3.
J Relig Health ; 57(6): 2193-2206, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28456853

RESUMO

Cultured meat is a promising product that is derived through biotechnology that partially circumvents animal physiology, thereby being potentially more sustainable, environmentally friendly and animal friendly than traditional livestock meat. Such a novel technology that can impact many consumers evokes ethical, philosophical and religious discussions. For the Islamic community, the crucial question is whether cultured meat is halal, meaning compliant with Islamic laws. Since the culturing of meat is a new discovery, invention and innovation by scientists that has never been discussed by classical jurists (fuqaha'), an ijtihad by contemporary jurists must look for and provide answers for every technology introduced, whether it comply the requirements of Islamic law or not. So, this article will discuss an Islamic perspective on cultured meat based on the original scripture in the Qur'an and interpretations by authoritative Islamic jurists. The halal status of cultured meat can be resolve through identifying the source cell and culture medium used in culturing the meat. The halal cultured meat can be obtained if the stem cell is extracted from a (Halal) slaughtered animal, and no blood or serum is used in the process. The impact of this innovation will give positive results in the environmental and sustain the livestock industry.


Assuntos
Bem-Estar do Animal , Islamismo , Carne , Matadouros , Animais , Princípios Morais , Inconsciência/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA