Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(24): 16864-16890, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38033308

RESUMO

Herein, we report a polyphosphoric acid (PPA)-mediated divergent metal-free operation to access a diverse collection of 3-(indol-2-yl)quinoxalin-2-ones and 4-(benzimidazol-2-yl)-3-methylcinnolines in moderate to excellent overall yields. The described process involves two distinct, and competing rearrangements of 3-(methyl(2-phenylhydrazono)methyl)quinoxalin-2-ones, namely [3,3]-sigmatropic Fischer rearrangement with the formation of an indole ring to produce 3-(indol-2-yl)-quinoxalin-2-ones, and Mamedov rearrangement with simultaneous construction of benzimidazole and cinnoline rings to form the new biheterocyclic system─4-(benzimidazol-2-yl)-3-methylcinnolines. The reaction mechanism of both rearrangement channels is explored by extensive dispersion-corrected DFT calculations. It is partcularly remarkable that when 3-(aryl(2-phenylhydrazono)methyl)quinoxalin-2-ones is used, instead of 3-(methyl(2-phenylhydrazono)methyl)quinoxalin-2-ones, reactions proceed regioselectively with the formation of only rearrangement products─4-(benzimidazol-2-yl)-3-arylcinnolines with high yields. This operationally simple protocol enables a rapid access to these scaffolds and is compatible with a wide scope of starting materials. In addition, the new rearrangement found features a promising approach for the design of unique compound libraries for drug design and discovery programs.

2.
J Org Chem ; 87(18): 12072-12086, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36069536

RESUMO

A new process has been developed for the bromine-promoted sequential (sp2)C = (sp2)C bond functionalization of (E)-3-styrylquinoxalin-2(1H)-ones and furo[b]annulation via the 5-exo-cyclization in dimethyl sulfoxide (DMSO). The reaction represents a novel strategy for the synthesis of 2-aryl-3-(methylthio)furo[2,3-b]quinoxalines and involves 3-(1,2-dibromo-2-arylethyl)quinoxalin-2(1H)-ones and 2-arylfuro[2,3-b]quinoxalines as key intermediates. Furthermore, DMSO was converted to dimethyl sulfide in situ, which served as the methylthiolation reagent in the reaction. This protocol constitutes an efficient and convenient method for the annulation and methylthiolation of (E)-3-styrylquinoxalin-2(1H)-ones bearing a wide range of functional groups in high yields at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA