Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0260528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34937056

RESUMO

Electrogenic bacteria produce power in soil based terrestrial microbial fuel cells (tMFCs) by growing on electrodes and transferring electrons released from the breakdown of substrates. The direction and magnitude of voltage production is hypothesized to be dependent on the available substrates. A sensor technology was developed for compounds indicative of anthropological activity by exposing tMFCs to gasoline, petroleum, 2,4-dinitrotoluene, fertilizer, and urea. A machine learning classifier was trained to identify compounds based on the voltage patterns. After 5 to 10 days, the mean voltage stabilized (+/- 0.5 mV). After the entire incubation, voltage ranged from -59.1 mV to 631.8 mV, with the tMFCs containing urea and gasoline producing the highest (624 mV) and lowest (-9 mV) average voltage, respectively. The machine learning algorithm effectively discerned between gasoline, urea, and fertilizer with greater than 94% accuracy, demonstrating that this technology could be successfully operated as an environmental sensor for change detection.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Técnicas Biossensoriais/métodos , Fertilizantes/análise , Gasolina/análise , Aprendizado de Máquina , Microbiologia do Solo , Ureia/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA