Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Struct Dyn ; 11(2): 024302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532924

RESUMO

Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (>500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å-1 in agreement with beam transport simulations.

2.
Struct Dyn ; 10(6): 064302, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38058995

RESUMO

The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams. Here, we present the technical design and capabilities of the HiRES (High Repetition-rate Electron Scattering) instrument, which blends relativistic electrons and high repetition rates to achieve orders of magnitude improvement in average beam current compared to the existing state-of-the-art instruments. The setup utilizes a novel electron source to deliver femtosecond duration electron pulses at up to MHz repetition rates for UED experiments. Instrument response function of sub-500 fs is demonstrated with < 100 fs time resolution targeted in future. We provide example cases of diffraction measurements on solid-state and gas-phase samples, including both micro- and nanodiffraction (featuring 100 nm beam size) modes, which showcase the potential of the instrument for novel UED experiments.

3.
Opt Express ; 30(19): 33804-33816, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242407

RESUMO

Extremely high beam-to-radiation energy conversion efficiencies can be obtained in a THz FEL using a strongly tapered helical undulator at the zero-slippage resonant condition, where a circular waveguide is used to match the radiation group velocity to the electron beam longitudinal velocity. In this paper we report on the first electro-optic sampling (EOS) based measurements of the broadband THz FEL radiation pulses emitted in this regime. The THz field waveforms are reconstructed in the spatial and temporal domains using multi-shot and single-shot EOS schemes respectively. The measurements are performed varying the input electron beam energy in the undulator providing insights on the complex dynamics in a waveguide FEL.

4.
Opt Express ; 27(15): 20221-20230, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510120

RESUMO

While significant progress has been made to fill the "THz gap", critical applications requiring powerful and energy efficient THz sources and amplifiers, from high frequency communications to medical and security imaging and nonlinear spectroscopy, continue to drive research on new methods of THz generation. Here we demonstrate a Free Electron Laser (FEL) THz source based on a novel interaction regime where broadband THz pulses can be phase and group velocity matched to the electron beam in a magnetic undulator via dispersion in a waveguide. Using < 10 pC, 6 MeV electron beams we show amplification of broadband THz pulses and demonstrate THz generation via both stimulated emission and spontaneous coherent superradiant emission, due to the short bunch length (< 200 fs rms) relative to resonant THz frequency (0.8 THz). A newly developed multifrequency simulation, designed to model the special case of guided FEL interaction, is benchmarked with the experiments and then used to extrapolate the capabilities of this "zero-slippage" FEL to efficient, tunable generation of > 100 µJ THz pulses when using higher (200 pC) beam charges and a tapered resonant condition.

5.
Ultramicroscopy ; 199: 1-6, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30711716

RESUMO

One of the frontiers of modern electron scattering instrumentation is improving temporal resolution in order to enable the observation of dynamical phenomena at their fundamental time-scales. We analyze how a radiofrequency cavity can be used as an electron longitudinal lens in order to produce a highly magnified temporal replica of an ultrafast process, and, in combination with a deflecting cavity, enable streaked electron images of optical-frequency phenomena. We present start-to-end simulations of an MeV electron beamline for two variations of this idea (a "magnifying-glass" and a "point-projection" configuration) showing the feasibility for an electron probe to achieve single shot 1.4 fs(rms) temporal resolution.

6.
Sci Rep ; 9(1): 532, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679471

RESUMO

The generation of X-rays and γ-rays based on synchrotron radiation from free electrons, emitted in magnet arrays such as undulators, forms the basis of much of modern X-ray science. This approach has the drawback of requiring very high energy, up to the multi-GeV-scale, electron beams, to obtain the required photon energy. Due to the limit in accelerating gradients in conventional particle accelerators, reaching high energy typically demands use of instruments exceeding 100's of meters in length. Compact, less costly, monochromatic X-ray sources based on very high field acceleration and very short period undulators, however, may enable diverse, paradigm-changing X-ray applications ranging from novel X-ray therapy techniques to active interrogation of sensitive materials, by making them accessible in energy reach, cost and size. Such compactness and enhanced energy reach may be obtained by an all-optical approach, which employs a laser-driven high gradient accelerator based on inverse free electron laser (IFEL), followed by a collision point for inverse Compton scattering (ICS), a scheme where a laser is used to provide undulator fields. We present an experimental proof-of-principle of this approach, where a TW-class CO2 laser pulse is split in two, with half used to accelerate a high quality electron beam up to 84 MeV through the IFEL interaction, and the other half acts as an electromagnetic undulator to generate up to 13 keV X-rays via ICS. These results demonstrate the feasibility of this scheme, which can be joined with other techniques such as laser recirculation to yield very compact photon sources, with both high peak and average brilliance, and with energies extending from the keV to MeV scale. Further, use of the IFEL acceleration with the ICS interaction produces a train of high intensity X-ray pulses, thus enabling a unique tool synchronized with a laser pulse for ultra-fast strobe, pump-probe experimental scenarios.

7.
Sci Rep ; 9(1): 84, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643155

RESUMO

In this study, for the first time, we demonstrated the presence of microRNAs and extracellular vesicles in human blastocoel fluid. The bioinformatic and comparative analyses identified the biological function of blastocoel fluid microRNAs and suggested a potential role inside the human blastocyst. We found 89 microRNAs, expressed at different levels, able to regulate critical signaling pathways controlling embryo development, such as pluripotency, cell reprogramming, epigenetic modifications, intercellular communication, cell adhesion and cell fate. Blastocoel fluid microRNAs reflect the miRNome of embryonic cells and their presence, associated with the discovery of extracellular vesicles, inside blastocoel fluid, strongly suggests their important role in mediating cell communication among blastocyst cells. Their characterization is important to better understand the earliest stages of embryogenesis and the complex circuits regulating pluripotency. Moreover, blastocoel fluid microRNA profiles could be influenced by blastocyst quality, therefore, microRNAs might be used to assess embryo potential in IVF cycles.


Assuntos
Blastocisto/metabolismo , Líquidos Corporais/química , Vesículas Extracelulares/metabolismo , MicroRNAs/análise , Transcriptoma , Biologia Computacional , Humanos , Anotação de Sequência Molecular
8.
Opt Express ; 26(22): 29216-29224, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30470087

RESUMO

Using an 800 nm, 45 fs pulse-front-tilted laser we demonstrate a record 315 keV energy gain in a dual grating dielectric laser accelerator (DLA) and average accelerating gradients of 560 MV/m over 0.5 mm. These results open a new regime in DLA characterized by significant evolution of the beam distribution in the longitudinal phase space, corresponding to > 1/4 of a synchrotron oscillation. By tilting the laser wavefront we control the resonant velocity of the DLA and observe a net energy gain, indicating that a tapered optical phase could be used to achieve very high energy gain.

9.
Phys Rev Lett ; 121(11): 114801, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265113

RESUMO

In this Letter we report a demonstration of electron ghost imaging. A digital micromirror device directly modulates the photocathode drive laser to control the transverse distribution of a relativistic electron beam incident on a sample. Correlating the structured illumination pattern to the total sample transmission then retrieves the target image, avoiding the need for a pixelated detector. In our example, we use a compressed sensing framework to improve the reconstruction quality and reduce the number of shots compared to raster scanning a small beam across the target. Compressed electron ghost imaging can reduce both acquisition time and sample damage in experiments for which spatially resolved detectors are unavailable (e.g., spectroscopy) or in which the experimental architecture precludes full frame direct imaging.

10.
Phys Rev Lett ; 120(9): 094801, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547316

RESUMO

Terahertz (THz) radiation promises breakthrough advances in compact advanced accelerators due to the gigavolts-per-meter fields achievable, but the challenge of maintaining overlap and synchronism between beams and short laser-generated THz pulses has so far limited interactions to the few-millimeter scale. We implement a novel scheme for simultaneous group and phase velocity matching of nearly single-cycle THz radiation with a relativistic electron beam for meter-scale inverse free-electron laser interaction in a magnetic undulator, resulting in energy modulations of up to 150 keV using modest THz pulse energies (≤1 µJ). Using this scheme, we demonstrate for the first time the use of a laser-based THz source for bunch-length compression and time-stamping of a relativistic electron beam.


Assuntos
Modelos Teóricos , Radiação Terahertz , Aceleradores de Partículas
11.
Phys Rev Lett ; 120(11): 114802, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29601767

RESUMO

We present results of an experiment showing the first successful demonstration of a cascaded microbunching scheme. Two modulator-chicane prebunchers arranged in series and a high power mid-IR laser seed are used to modulate a 52 MeV electron beam into a train of sharp microbunches phase locked to the external drive laser. This configuration is shown to greatly improve matching of the beam into the small longitudinal phase space acceptance of short-wavelength accelerators. We demonstrate trapping of nearly all (96%) of the electrons in a strongly tapered inverse free-electron laser accelerator, with an order-of-magnitude reduction in injection losses compared to the classical single-buncher scheme. These results represent a critical advance in laser-based longitudinal phase space manipulations and find application in high gradient advanced acceleration as well as in high peak and average power coherent radiation sources.

12.
Nanotechnology ; 29(26): 265701, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29557787

RESUMO

The stability of silver nanoplatelet (NP) suspensions prepared with different concentrations of trisodium citrate (TSC) was studied by depolarized dynamic light scattering (DDLS) and UV-vis spectrometry. The morphology of the nanoparticles, as well as the color and stability of the sols, are tuned by the concentration of the capping agent. The nanoparticles prepared with high TSC concentration (>10-4 M) are blue triangular NPs showing a slight truncation of the tips with aging. When low TSC concentrations are used, the color of the sols changes from blue to yellow with aging time and a strong modification of the morphology occurs: the nanoparticle shape changes from triangular to spherical. Remarkably, they show a high degree of anisotropy. The aging process was followed by the UV-vis spectra and by measuring the rotational diffusion coefficient by DDLS, providing information on the nanoparticle size and shape evolution. The high intensity of depolarized signal and the high value of rotational diffusion coefficient suggest that the aging process increases the thickness and the roughness of the nanoparticles.

13.
Struct Dyn ; 4(4): 044025, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28612040

RESUMO

In this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This "double-shot" technique enables the efficient capture of irreversible dynamics in both diffraction and imaging modes. In this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column.

14.
Phys Rev Lett ; 117(17): 174801, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824445

RESUMO

We present results of an experiment where, using a 200 GW CO_{2} laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.

15.
Phys Rev Lett ; 117(2): 024801, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447510

RESUMO

We present the results of an experiment where a short focal length (∼1.3 cm), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30× were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T/m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.

16.
Nat Commun ; 5: 4928, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25222026

RESUMO

Compact, table-top sized accelerators are key to improving access to high-quality beams for use in industry, medicine and academic research. Among laser-based accelerating schemes, the inverse free-electron laser (IFEL) enjoys unique advantages. By using an undulator magnetic field in combination with a laser, GeV m(-1) gradients may be sustained over metre-scale distances using laser intensities several orders of magnitude less than those used in laser wake-field accelerators. Here we show for the first time the capture and high-gradient acceleration of monoenergetic electron beams from a helical IFEL. Using a modest intensity (~10(13) W cm(-2)) laser pulse and strongly tapered 0.5 m long undulator, we demonstrate >100 MV m(-1) accelerating gradient, >50 MeV energy gain and excellent output beam quality. Our results pave the way towards compact, tunable GeV IFEL accelerators for applications such as driving soft X-ray free-electron lasers and producing γ-rays by inverse Compton scattering.

17.
Micron ; 63: 40-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24631423

RESUMO

Recent advances in ultrafast technology enable both the study and the control of materials properties thanks to the ability to record high temporal resolution movies of their transformations, or the ability to generate new states of matter by selecting ad hoc an excitation to drive the system out of equilibrium. The holy grail of this type of experiments is to combine a high tuneability of the excitation with a wide observation window. For example, this is achieved in multidimensional optical spectroscopy where the response to several excitation energies is monitored in a broad energy range by a large bandwidth optical pulse. In this article, the possibility to combine the chemical sensitivity of intense tuneable X-rays pulses from a free electron laser, with the wide range of observables available in an ultrafast transmission electron microscope is discussed. The requirements for such experiments are quantified via estimates based on state of the art experiments and simulations, and it is proposed that ultrafast electron imaging, diffraction and spectroscopy experiments can be performed in combination with a chemically selective X-ray excitation of materials.

18.
Phys Rev Lett ; 111(11): 114802, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24074094

RESUMO

We present the experimental demonstration of a new scheme for the generation of ultrashort pulse trains based on free-electron-laser (FEL) emission from a multipeaked electron energy distribution. Two electron beamlets with energy difference larger than the FEL parameter ρ have been generated by illuminating the cathode with two ps-spaced laser pulses, followed by a rotation of the longitudinal phase space by velocity bunching in the linac. The resulting self-amplified spontaneous emission FEL radiation, measured through frequency-resolved optical gating diagnostics, reveals a double-peaked spectrum and a temporally modulated pulse structure.

19.
Ultramicroscopy ; 127: 14-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22951263

RESUMO

In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision.

20.
Phys Rev Lett ; 110(7): 074801, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166375

RESUMO

We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA