Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Thromb Haemost ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518896

RESUMO

In many patients referred with significant bleeding phenotype, laboratory testing fails to define any hemostatic abnormalities. Clinical practice with respect to diagnosis and management of this patient cohort poses significant clinical challenges. We recommend that bleeding history in these patients should be objectively assessed using the International Society on Thrombosis and Haemostasis (ISTH) bleeding assessment tool. Patients with increased bleeding assessment tool scores should progress to hemostasis laboratory testing. To diagnose bleeding disorder of unknown cause (BDUC), normal complete blood count, prothrombin time, activated partial thromboplastin time, thrombin time, von Willebrand factor antigen, von Willebrand factor function, coagulation factors VIII, IX, and XI, and platelet light transmission aggregometry should be the minimum laboratory assessment. In some laboratories, additional specialized hemostasis testing may be performed to identify other rare causes of bleeding. We recommend that patients with a significant bleeding phenotype but normal laboratory investigations should be registered with a diagnosis of BDUC in preference to other terminology. Global hemostatic tests and markers of fibrinolysis demonstrate variable abnormalities, and their clinical significance remains uncertain. Targeted genomic sequencing examining candidate hemostatic genes has a low diagnostic yield. Underlying BDUC should be considered in patients with heavy menstrual bleeding since delays in diagnosis often extend to many years and negatively impact quality of life. Treatment options for BDUC patients include tranexamic acid, desmopressin, and platelet transfusions.

2.
J Thromb Haemost ; 22(6): 1758-1771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462220

RESUMO

BACKGROUND: The widespread use of the antifibrinolytic agent, tranexamic acid (TXA), interferes with the quantification of fibrinolysis by dynamic laboratory assays such as clot lysis, making it difficult to measure fibrinolysis in many trauma patients. At the final stage of coagulation, factor (F)XIIIa catalyzes the formation of fibrin-fibrin and fibrin-α2-antiplasmin (α2AP) cross-links, which increases clot mechanical strength and resistance to fibrinolysis. OBJECTIVES: Here, we developed a method to quantify fibrin-fibrin and fibrin-α2AP cross-links that avoids the challenges posed by TXA in determining fibrinolytic resistance in conventional assays. METHODS: Fibrinogen alpha (FGA) chain (FGA-FGA), fibrinogen gamma (FGG) chain (FGG-FGG), and FGA-α2AP cross-links were quantified using liquid chromatography-mass spectrometry (LC-MS) and parallel reaction monitoring in paired plasma samples from trauma patients prefibrinogen and postfibrinogen replacement. Differences in the abundance of cross-links in trauma patients receiving cryoprecipitate (cryo) or fibrinogen concentrate (Fg-C) were analyzed. RESULTS: The abundance of cross-links was significantly increased in trauma patients postcryo, but not Fg-C transfusion (P < .0001). The abundance of cross-links was positively correlated with the toughness of individual fibrin fibers, the peak thrombin concentration, and FXIII antigen (P < .05). CONCLUSION: We have developed a novel method that allows us to quantify fibrin cross-links in trauma patients who have received TXA, providing an indirect measure of fibrinolytic resistance. Using this novel approach, we have avoided the effect of TXA and shown that cryo increases fibrin-fibrin and fibrin-α2AP cross-linking when compared with Fg-C, highlighting the importance of FXIII in clot formation and stability in trauma patients.


Assuntos
Antifibrinolíticos , Fibrina , Fibrinogênio , Fibrinólise , Ácido Tranexâmico , Ferimentos e Lesões , alfa 2-Antiplasmina , Humanos , Fibrina/metabolismo , Fibrina/química , alfa 2-Antiplasmina/análise , alfa 2-Antiplasmina/metabolismo , Fibrinogênio/análise , Fibrinogênio/metabolismo , Ferimentos e Lesões/sangue , Antifibrinolíticos/sangue , Trombose/sangue , Coagulação Sanguínea , Cromatografia Líquida , Masculino , Adulto , Feminino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade
3.
J Thromb Haemost ; 21(12): 3304-3316, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38000850

RESUMO

Fibrinolysis is the system primarily responsible for removal of fibrin deposits and blood clots in the vasculature. The terminal enzyme in the pathway, plasmin, is formed from its circulating precursor, plasminogen. Fibrin is by far the most legendary substrate, but plasmin is notoriously prolific and is known to cleave many other proteins and participate in the activation of other proteolytic systems. Fibrinolysis is often overshadowed by the coagulation system and viewed as a simplistic poorer relation. However, the primordial plasminogen activators evolved alongside the complement system, approximately 70 million years before coagulation saw the light of day. It is highly likely that the plasminogen activation system evolved with its roots in primordial immunity. Almost all immune cells harbor at least one of a dozen plasminogen receptors that allow plasmin formation on the cell surface that in turn modulates immune cell behavior. Similarly, numerous pathogens express their own plasminogen activators or contain surface proteins that provide binding sites for host plasminogen. The fibrinolytic system has been harnessed for clinical medicine for many decades with the development of thrombolytic drugs and antifibrinolytic agents. Our refined understanding and appreciation of the fibrinolytic system and its alliance with infection and immunity and beyond are paving the way for new developments and interest in novel therapeutics and applications. One must ponder as to whether the nomenclature of the system hampered our understanding, by focusing on fibrin, rather than the complex myriad of interactions and substrates of the plasminogen activation system.


Assuntos
Fibrinolisina , Fibrinólise , Humanos , Fibrinólise/fisiologia , Fibrinolisina/metabolismo , Ativadores de Plasminogênio , Plasminogênio , Fibrina/metabolismo , Serina Proteases
4.
J Thromb Haemost ; 21(10): 2645-2647, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37739586
5.
J Thromb Haemost ; 21(12): 3589-3596, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37734715

RESUMO

BACKGROUND: Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is a rare syndrome associated with adenoviral vector vaccines for COVID-19. The syndrome is characterized by thrombosis, anti-platelet factor 4 (PF4) antibodies, thrombocytopenia, high D-dimer, and hypofibrinogenemia. OBJECTIVES: To investigate abnormalities in fibrinolysis that contribute to the clinical features of VITT. METHODS: Plasma samples from 18 suspected VITT cases were tested for anti-PF4 by ELISA and characterized as meeting criteria for VITT (11/18) or deemed unlikely (7/18; non-VITT). Antigen levels of PAI-1, factor XIII (FXIII), plasmin-α2antiplasmin (PAP), and inflammatory markers were quantified. Plasmin generation was quantified by chromogenic substrate. Western blotting was performed with antibodies to fibrinogen, FXIII-A, and plasminogen. RESULTS: VITT patients 10/11 had scores indicative of overt disseminated intravascular coagulation, while 0/7 non-VITT patients met the criteria. VITT patients had significantly higher levels of inflammatory markers, IL-1ß, IL-6, IL-8, TNFα, and C-reactive protein. In VITT patients, both fibrinogen and FXIII levels were significantly lower, while PAP and tPA-mediated plasmin generation were higher compared to non-VITT patients. Evidence of fibrinogenolysis was observed in 9/11 VITT patients but not in non-VITT patients or healthy controls. Fibrinogen degradation products were apparent, with obvious cleavage of the fibrinogen α-chain. PAP complex was evident in those VITT patients with fibrinogenolysis, but not in non-VITT patients or healthy donors. CONCLUSION: VITT patients show evidence of overt disseminated intravascular coagulation and fibrinogenolysis, mediated by dysregulated plasmin generation, as evidenced by increased PAP and plasmin generation. These observations are consistent with the clinical presentation of both thrombosis and bleeding in VITT.


Assuntos
Coagulação Intravascular Disseminada , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Trombose , Vacinas , Humanos , Fibrinólise , Fibrinolisina , Coagulação Intravascular Disseminada/induzido quimicamente , Coagulação Intravascular Disseminada/diagnóstico , Vacinas contra COVID-19/efeitos adversos , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico , Trombose/etiologia , Fibrinogênio
6.
J Clin Med ; 12(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762789

RESUMO

Acute lung injury in COVID-19 results in diffuse alveolar damage with disruption of the alveolar-capillary barrier, coagulation activation, alveolar fibrin deposition and pulmonary capillary thrombi. Nebulized recombinant tissue plasminogen activator (rt-PA) has the potential to facilitate localized thrombolysis in the alveolar compartment and improve oxygenation. In this proof-of-concept safety study, adults with COVID-19-induced respiratory failure and a <300 mmHg PaO2/FiO2 (P/F) ratio requiring invasive mechanical ventilation (IMV) or non-invasive respiratory support (NIRS) received nebulized rt-PA in two cohorts (C1 and C2), alongside standard of care, between 23 April-30 July 2020 and 21 January-19 February 2021, respectively. Matched historical controls (MHC; n = 18) were used in C1 to explore efficacy. Safety co-primary endpoints were treatment-related bleeds and <1.0-1.5 g/L fibrinogen reduction. A variable dosing strategy with clinical efficacy endpoint and minimal safety concerns was determined in C1 for use in C2; patients were stratified by ventilation type to receive 40-60 mg rt-PA daily for ≤14 days. Nine patients in C1 (IMV, 6/9; NIRS, 3/9) and 26 in C2 (IMV, 12/26; NIRS, 14/26) received nebulized rt-PA for a mean (SD) of 6.7 (4.6) and 9.1(4.6) days, respectively. Four bleeds (one severe, three mild) in three patients were considered treatment related. There were no significant fibrinogen reductions. Greater improvements in mean P/F ratio from baseline to study end were observed in C1 compared with MHC (C1; 154 to 299 vs. MHC; 154 to 212). In C2, there was no difference in the baseline P/F ratio of NIRS and IMV patients. However, a larger improvement in the P/F ratio occurred in NIRS patients (NIRS; 126 to 240 vs. IMV; 120 to 188) and fewer treatment days were required (NIRS; 7.86 vs. IMV; 10.5). Nebulized rt-PA appears to be well-tolerated, with a trend towards improved oxygenation, particularly in the NIRS group. Randomized clinical trials are required to demonstrate the clinical effect significance and magnitude.

7.
Res Pract Thromb Haemost ; 7(5): 100200, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37601014

RESUMO

Background: Factor XIII (FXIII) is an important proenzyme in the hemostatic system. The plasma-derived enzyme activated FXIII cross-links fibrin fibers within thrombi to increase their mechanical strength and cross-links fibrin to fibrinolytic inhibitors, specifically α2-antiplasmin, to increase resistance to fibrinolysis. We have previously shown that cellular FXIII (factor XIII-A [FXIII-A]), which is abundant in the platelet cytoplasm, is externalized onto the activated membrane and cross-links extracellular substrates. The contribution of cellular FXIII-A to platelet activation and platelet function has not been extensively studied. Objectives: This study aims to identify the role of platelet FXIII-A in platelet function. Methods: We used normal healthy platelets with a cell permeable FXIII inhibitor and platelets from FXIII-deficient patients as a FXIII-free platelet model in a range of platelet function and clotting tests. Results: Our data demonstrate that platelet FXIII-A enhances fibrinogen binding to the platelet surface upon agonist stimulation and improves the binding of platelets to fibrinogen and aggregation under flow in a whole-blood thrombus formation assay. In the absence of FXIII-A, platelets show reduced sensitivity to agonist stimulation, including decreased P-selectin exposure and fibrinogen binding. We show that FXIII-A is involved in platelet spreading where a lack of FXIII-A reduces the ability of platelets to fully spread on fibrinogen and collagen. Our data demonstrate that platelet FXIII-A is important for clot retraction where clots formed in its absence retracted to a lesser extent. Conclusion: Overall, this study shows that platelet FXIII-A functions during thrombus formation by aiding platelet activation and thrombus retraction in addition to its antifibrinolytic roles.

8.
Front Cardiovasc Med ; 10: 1146833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153474

RESUMO

The superfamily of serine protease inhibitors (SERPINs) are a class of inhibitors that utilise a dynamic conformational change to trap and inhibit their target enzymes. Their powerful nature lends itself well to regulation of complex physiological enzymatic cascades, such as the haemostatic, inflammatory and complement pathways. The SERPINs α2-antiplasmin, plasminogen-activator inhibitor-1, plasminogen-activator inhibitor-2, protease nexin-1, and C1-inhibitor play crucial inhibitory roles in regulation of the fibrinolytic system and inflammation. Elevated levels of these SERPINs are associated with increased risk of thrombotic complications, obesity, type 2 diabetes, and hypertension. Conversely, deficiencies of these SERPINs have been linked to hyperfibrinolysis with bleeding and angioedema. In recent years SERPINs have been implicated in the modulation of the immune response and various thromboinflammatory conditions, such as sepsis and COVID-19. Here, we highlight the current understanding of the physiological role of SERPINs in haemostasis and inflammatory disease progression, with emphasis on the fibrinolytic pathway, and how this becomes dysregulated during disease. Finally, we consider the role of these SERPINs as potential biomarkers of disease progression and therapeutic targets for thromboinflammatory diseases.

9.
Platelets ; 34(1): 2206921, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37139869

RESUMO

Statins inhibit the mevalonate pathway by impairing protein prenylation via depletion of lipid geranylgeranyl diphosphate (GGPP). Rab27b and Rap1a are small GTPase proteins involved in dense granule secretion, platelet activation, and regulation. We analyzed the impact of statins on prenylation of Rab27b and Rap1a in platelets and the downstream effects on fibrin clot properties. Whole blood thromboelastography revealed that atorvastatin (ATV) delayed clot formation time (P < .005) and attenuated clot firmness (P < .005). ATV pre-treatment inhibited platelet aggregation and clot retraction. Binding of fibrinogen and P-selectin exposure on stimulated platelets was significantly lower following pre-treatment with ATV (P < .05). Confocal microscopy revealed that ATV significantly altered the structure of platelet-rich plasma clots, consistent with the reduced fibrinogen binding. ATV enhanced lysis of Chandler model thrombi 1.4-fold versus control (P < .05). Western blotting revealed that ATV induced a dose-dependent accumulation of unprenylated Rab27b and Rap1a in the platelet membrane. ATV dose-dependently inhibited ADP release from activated platelets. Exogenous GGPP rescued the prenylation of Rab27b and Rap1a, and partially restored the ADP release defect, suggesting these changes arise from reduced prenylation of Rab27b. These data demonstrate that statins attenuate platelet aggregation, degranulation, and binding of fibrinogen thereby having a significant impact on clot contraction and structure.


What is the context? Statins such as Atorvastatin (ATV) are 3-hydroxy, 3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, which block the cholesterol biosynthetic pathway to lower total serum levels and LDL-cholesterol.The cholesterol pathway also provides a supply of isoprenoids (farnesyl and geranylgeranyl) for the prenylation of signaling molecules, which include the families of Ras and Rho small GTPases.Prenyl groups provide a membrane anchor that is essential for the correct membrane localization and function of these proteins.Statins deplete cells of lipid geranylgeranyl diphosphate (GGPP) thereby inhibiting progression of the mevalonate pathway and prenylation of proteins.Rab27b and Rap1 are small GTPase proteins in platelets that are involved in the secretion of platelet granules and integrin activation.What is new?In this study, we found that ATV impairs prenylation of Rab27b and Rap1a and attenuates platelet function.These effects were partially rescued by GGPP, indicating the involvement of the mevalonate pathway.Platelet aggregation and degranulation was significantly attenuated by ATV.The impact of statins on platelet function altered clot formation, structure and contraction generating a clot that was more susceptible to degradation.What is the impact?This study demonstrates a novel mechanism whereby statins alter platelet responses and ultimately clot structure and stability.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Trombose , Humanos , Difosfato de Adenosina/metabolismo , Atorvastatina/farmacologia , Plaquetas/metabolismo , Fibrinogênio/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Prenilação , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Trombose/tratamento farmacológico , Trombose/metabolismo
10.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902231

RESUMO

Macrophages express the A subunit of coagulation factor XIII (FXIII-A), a transglutaminase which cross-links proteins through Nε-(γ-L-glutamyl)-L-lysyl iso-peptide bonds. Macrophages are major cellular constituents of the atherosclerotic plaque; they may stabilize the plaque by cross-linking structural proteins and they may become transformed into foam cells by accumulating oxidized LDL (oxLDL). The combination of oxLDL staining by Oil Red O and immunofluorescent staining for FXIII-A demonstrated that FXIII-A is retained during the transformation of cultured human macrophages into foam cells. ELISA and Western blotting techniques revealed that the transformation of macrophages into foam cells elevated the intracellular FXIII-A content. This phenomenon seems specific for macrophage-derived foam cells; the transformation of vascular smooth muscle cells into foam cells fails to induce a similar effect. FXIII-A containing macrophages are abundant in the atherosclerotic plaque and FXIII-A is also present in the extracellular compartment. The protein cross-linking activity of FXIII-A in the plaque was demonstrated using an antibody labeling the iso-peptide bonds. Cells showing combined staining for FXIII-A and oxLDL in tissue sections demonstrated that FXIII-A-containing macrophages within the atherosclerotic plaque are also transformed into foam cells. Such cells may contribute to the formation of lipid core and the plaque structurization.


Assuntos
Aterosclerose , Fator XIII , Placa Aterosclerótica , Humanos , Aterosclerose/metabolismo , Fator XIII/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Peptídeos/metabolismo , Placa Aterosclerótica/metabolismo
11.
J Thromb Haemost ; 21(4): 862-879, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696216

RESUMO

BACKGROUND: Postpartum hemorrhage (PPH) may be exacerbated by hemostatic impairment. Information about PPH-associated coagulopathy is limited, often resulting in treatment strategies based on data derived from trauma studies. OBJECTIVES: To investigate hemostatic changes associated with PPH. PATIENTS/METHODS: From a population of 11 279 maternities, 518 (4.6%) women were recruited with PPH ≥ 1000 mL or placental abruption, amniotic fluid embolism, or concealed bleeding. Routine coagulation and viscoelastometric results were collated. Stored plasma samples were used to investigate women with bleeds > 2000 mL or those at increased risk of coagulopathy defined as placenta abruption, amniotic fluid embolism, or need for blood components. Procoagulant factors were assayed and global hemostasis was assessed using thrombin generation. Fibrinolysis was investigated with D-dimer and plasmin/antiplasmin complexes. Dysfibrinogenemia was assessed using the Clauss/antigen ratio. RESULTS: At 1000 mL blood loss, Clauss fibrinogen was ≤2 g/L in 2.4% of women and 6/27 (22.2%) cases of abruption. Women with very large bleeds (>3000 mL) had evidence of a dilutional coagulopathy, although hemostatic impairment was uncommon. A subgroup of 12 women (1.06/1000 maternities) had a distinct coagulopathy characterized by massive fibrinolysis (plasmin/antiplasmin > 40 000 ng/mL), increased D-dimer, hypofibrinogenemia, dysfibrinogenemia, reduced factor V and factor VIII, and increased activated protein C, termed acute obstetric coagulopathy. It was associated with fetal or neonatal death in 50% of cases and increased maternal morbidity. CONCLUSIONS: Clinically significant hemostatic impairment is uncommon during PPH, but a subgroup of women have a distinct and severe coagulopathy characterized by hyperfibrinolysis, low fibrinogen, and dysfibrinogenemia associated with poor fetal outcomes.


Assuntos
Afibrinogenemia , Antifibrinolíticos , Transtornos da Coagulação Sanguínea , Embolia Amniótica , Hemostáticos , Hemorragia Pós-Parto , Recém-Nascido , Feminino , Humanos , Gravidez , Masculino , Hemorragia Pós-Parto/diagnóstico , Hemorragia Pós-Parto/etiologia , Fibrinolisina/metabolismo , Afibrinogenemia/complicações , Afibrinogenemia/diagnóstico , Placenta , Fibrinogênio/metabolismo , Estudos de Coortes
12.
Semin Thromb Hemost ; 49(3): 305-313, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36522166

RESUMO

Plasminogen activator inhibitor 1 (PAI-1), a SERPIN inhibitor, is primarily known for its regulation of fibrinolysis. However, it is now known that this inhibitor functions and contributes to many (patho)physiological processes including inflammation, wound healing, cell adhesion, and tumor progression.This review discusses the past, present, and future roles of PAI-1, with a particular focus on the discovery of this inhibitor in the 1970s and subsequent characterization in health and disease. Throughout the past few decades diverse functions of this serpin have unraveled and it is now considered an important player in many disease processes. PAI-1 is expressed by numerous cell types, including megakaryocytes and platelets, adipocytes, endothelial cells, hepatocytes, and smooth muscle cells. In the circulation PAI-1 exists in two pools, within plasma itself and in platelet α-granules. Platelet PAI-1 is secreted following activation with retention of the inhibitor on the activated platelet membrane. Furthermore, these anucleate cells contain PAI-1 messenger ribonucleic acid to allow de novo synthesis.Outside of the traditional role of PAI-1 in fibrinolysis, this serpin has also been identified to play important roles in metabolic syndrome, obesity, diabetes, and most recently, acute respiratory distress syndrome, including coronavirus disease 2019 disease. This review highlights the complexity of PAI-1 and the requirement to ascertain a better understanding on how this complex serpin functions in (patho)physiological processes.


Assuntos
COVID-19 , Serpinas , Humanos , Plaquetas/metabolismo , COVID-19/metabolismo , Células Endoteliais/metabolismo , Fibrinólise , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Serpinas/metabolismo
13.
Front Cardiovasc Med ; 9: 1054541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531720

RESUMO

The formation of thrombi is shaped by intravascular shear stress, influencing both fibrin architecture and the cellular composition which has downstream implications in terms of stability against mechanical and fibrinolytic forces. There have been many advancements in the development of models that incorporate flow rates akin to those found in vivo. Both thrombus formation and breakdown are simultaneous processes, the balance of which dictates the size, persistence and resolution of thrombi. Therefore, there is a requirement to have models which mimic the physiological shear experienced within the vasculature which in turn influences the fibrinolytic degradation of the thrombus. Here, we discuss various assays for fibrinolysis and importantly the development of novel models that incorporate physiological shear rates. These models are essential tools to untangle the molecular and cellular processes which govern fibrinolysis and can recreate the conditions within normal and diseased vessels to determine how these processes become perturbed in a pathophysiological setting. They also have utility to assess novel drug targets and antithrombotic drugs that influence thrombus stability.

14.
Crit Care ; 26(1): 290, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163263

RESUMO

BACKGROUND: Fibrinogen is the first coagulation protein to reach critical levels during traumatic haemorrhage. This laboratory study compares paired plasma samples pre- and post-fibrinogen replacement from the Fibrinogen Early In Severe Trauma studY (FEISTY; NCT02745041). FEISTY is the first randomised controlled trial to compare the time to administration of cryoprecipitate (cryo) and fibrinogen concentrate (Fg-C; Riastap) in trauma patients. This study will determine differences in clot strength and fibrinolytic stability within individuals and between treatment arms. METHODS: Clot lysis, plasmin generation, atomic force microscopy and confocal microscopy were utilised to investigate clot strength and structure in FEISTY patient plasma. RESULTS: Fibrinogen concentration was significantly increased post-transfusion in both groups. The rate of plasmin generation was reduced 1.5-fold post-transfusion of cryo but remained unchanged with Fg-C transfusion. Plasminogen activator inhibitor 1 activity and antigen levels and Factor XIII antigen were increased post-treatment with cryo, but not Fg-C. Confocal microscopy analysis of fibrin clots revealed that cryo transfusion restored fibrin structure similar to those observed in control clots. In contrast, clots remained porous with stunted fibres after infusion with Fg-C. Cryo but not Fg-C treatment increased individual fibre toughness and stiffness. CONCLUSIONS: In summary, our data indicate that cryo transfusion restores key fibrinolytic regulators and limits plasmin generation to form stronger clots in an ex vivo laboratory study. This is the first study to investigate differences in clot stability and structure between cryo and Fg-C and demonstrates that the additional factors in cryo allow formation of a stronger and more stable clot.


Assuntos
Transtornos da Coagulação Sanguínea , Hemostáticos , Trombose , Fator XIII/farmacologia , Fibrina/química , Fibrina/farmacologia , Fibrinogênio/uso terapêutico , Fibrinolisina/farmacologia , Fibrinólise , Hemostáticos/farmacologia , Humanos , Inibidor 1 de Ativador de Plasminogênio , Trombose/terapia
15.
Blood ; 140(24): 2626-2643, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36026606

RESUMO

S100A8/A9, also known as "calprotectin" or "MRP8/14," is an alarmin primarily secreted by activated myeloid cells with antimicrobial, proinflammatory, and prothrombotic properties. Increased plasma levels of S100A8/A9 in thrombo-inflammatory diseases are associated with thrombotic complications. We assessed the presence of S100A8/A9 in the plasma and lung autopsies from patients with COVID-19 and investigated the molecular mechanism by which S100A8/A9 affects platelet function and thrombosis. S100A8/A9 plasma levels were increased in patients with COVID-19 and sustained high levels during hospitalization correlated with poor outcomes. Heterodimeric S100A8/A9 was mainly detected in neutrophils and deposited on the vessel wall in COVID-19 lung autopsies. Immobilization of S100A8/A9 with collagen accelerated the formation of a fibrin-rich network after perfusion of recalcified blood at venous shear. In vitro, platelets adhered and partially spread on S100A8/A9, leading to the formation of distinct populations of either P-selectin or phosphatidylserine (PS)-positive platelets. By using washed platelets, soluble S100A8/A9 induced PS exposure but failed to induce platelet aggregation, despite GPIIb/IIIa activation and alpha-granule secretion. We identified GPIbα as the receptor for S100A8/A9 on platelets inducing the formation of procoagulant platelets with a supporting role for CD36. The effect of S100A8/A9 on platelets was abolished by recombinant GPIbα ectodomain, platelets from a patient with Bernard-Soulier syndrome with GPIb-IX-V deficiency, and platelets from mice deficient in the extracellular domain of GPIbα. We identified the S100A8/A9-GPIbα axis as a novel targetable prothrombotic pathway inducing procoagulant platelets and fibrin formation, in particular in diseases associated with high levels of S100A8/A9, such as COVID-19.


Assuntos
Plaquetas , COVID-19 , Calgranulina A , Calgranulina B , Complexo Glicoproteico GPIb-IX de Plaquetas , Animais , Camundongos , Plaquetas/metabolismo , Calgranulina A/metabolismo , COVID-19/metabolismo , Fibrina/metabolismo , Fosfatidilserinas/metabolismo , Agregação Plaquetária , Humanos , Calgranulina B/metabolismo , Autopsia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo
16.
J Thromb Haemost ; 20(10): 2394-2406, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780481

RESUMO

BACKGROUND: Severe COVID-19 disease is associated with thrombotic complications and extensive fibrin deposition. This study investigates whether the hemostatic complications in COVID-19 disease arise due to dysregulation of the fibrinolytic system. METHODS: This prospective study analyzed fibrinolytic profiles of 113 patients hospitalized with COVID-19 disease with 24 patients with non-COVID-19 respiratory infection and healthy controls. Antigens were quantified by Ella system or ELISA, clot lysis by turbidimetric assay, and plasminogen activator inhibitor-1 (PAI-1)/plasmin activity using chromogenic substrates. Clot structure was visualized by confocal microscopy. RESULTS: PAI-1 and its cofactor, vitronectin, are significantly elevated in patients with COVID-19 disease compared with those with non-COVID-19 respiratory infection and healthy control groups. Thrombin activatable fibrinolysis inhibitor and tissue plasminogen activator were elevated in patients with COVID-19 disease relative to healthy controls. PAI-1 and tissue plasminogen activator (tPA) were associated with more severe COVID-19 disease severity. Clots formed from COVID-19 plasma demonstrate an altered fibrin network, with attenuated fiber length and increased branching. Functional studies reveal that plasmin generation and clot lysis were markedly attenuated in COVID-19 disease, while PAI-1 activity was elevated. Clot lysis time significantly correlated with PAI-1 levels. Stratification of COVID-19 samples according to PAI-1 levels reveals significantly faster lysis when using the PAI-1 resistant (tPA) variant, tenecteplase, over alteplase lysis. CONCLUSION: This study shows that the suboptimal fibrinolytic response in COVID-19 disease is directly attributable to elevated levels of PAI-1, which attenuate plasmin generation. These data highlight the important prognostic potential of PAI-1 and the possibility of using pre-existing drugs, such as tenecteplase, to treat COVID-19 disease and potentially other respiratory diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Carboxipeptidase B2 , Hemostáticos , Trombose , Compostos Cromogênicos , Fibrina , Fibrinolisina/farmacologia , Fibrinólise , Hemostáticos/farmacologia , Humanos , Inibidor 1 de Ativador de Plasminogênio , Estudos Prospectivos , Tenecteplase , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Vitronectina
18.
J Thromb Haemost ; 20(6): 1496-1506, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35352482

RESUMO

Bleeding and thrombosis are major clinical problems with high morbidity and mortality. Treatment modalities for these diseases have improved in recent years, but there are many clinical questions remaining and a need to advance diagnosis, management, and therapeutic options. Basic research plays a fundamental role in understanding normal and disease processes, yet this sector has observed a steady decline in funding prospects thereby hindering support for studies of mechanisms of disease and therapeutic development opportunities. With the financial constraints faced by basic scientists, the ISTH organized a basic science task force (BSTF), comprising Scientific and Standardization Committee subcommittee chairs and co-chairs, to identify research opportunities for basic science in hemostasis and thrombosis. The goal of the BSTF was to develop a set of recommended priorities to build support in the thrombosis and hemostasis community and to inform ISTH basic science programs and policy making. The BSTF identified three principal opportunity areas that were of significant overarching relevance: mechanisms causing bleeding, innate immunity and thrombosis, and venous thrombosis. Within these, five fundamental research areas were highlighted: blood rheology, platelet biogenesis, cellular contributions to thrombosis and hemostasis, structure-function protein analyses, and visualization of hemostasis. This position paper discusses the importance and relevance of these opportunities and research areas, and the rationale for their inclusion. These findings have implications for the future of fundamental research in thrombosis and hemostasis to make transformative scientific discoveries and tackle key clinical questions. This will permit better understanding, prevention, diagnosis, and treatment of hemostatic and thrombotic conditions.


Assuntos
Hemostáticos , Trombose , Comunicação , Hemorragia , Hemostasia , Humanos , Trombose/diagnóstico , Trombose/terapia
19.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35328366

RESUMO

Loss of fibrinogen is a feature of trauma-induced coagulopathy (TIC), and restoring this clotting factor is protective against hemorrhages. We compared the efficacy of cryoprecipitate, and of the fibrinogen concentrates RiaSTAP® and FibCLOT® in restoring the clot integrity in models of TIC. Cryoprecipitate and FibCLOT® produced clots with higher maximal absorbance and enhanced resistance to lysis relative to RiaSTAP®. The fibrin structure of clots, comprising cryoprecipitate and FibCLOT®, mirrored those of normal plasma, whereas those with RiaSTAP® showed stunted fibers and reduced porosity. The hemodilution of whole blood reduced the maximum clot firmness (MCF) as assessed by thromboelastography. MCF could be restored with the inclusion of 1 mg/mL of fibrinogen, but only FibCLOT® was effective at stabilizing against lysis. The overall clot strength, measured using the Quantra® hemostasis analyzer, was restored with both fibrinogen concentrates but not cryoprecipitate. α2antiplasmin and plasminogen activator inhibitor-1 (PAI-1) were constituents of cryoprecipitate but were negligible in RiaSTAP® and FibCLOT®. Interestingly, cryoprecipitate and FibCLOT® contained significantly higher factor XIII (FXIII) levels, approximately three-fold higher than RiaSTAP®. Our data show that 1 mg/mL fibrinogen, a clinically achievable concentration, can restore adequate clot integrity. However, FibCLOT®, which contained more FXIII, was superior in normalizing the clot structure and in stabilizing hemodiluted clots against mechanical and fibrinolytic degradation.


Assuntos
Transtornos da Coagulação Sanguínea , Hemostáticos , Trombose , Fator XIII/farmacologia , Fator XIII/uso terapêutico , Fibrina/química , Fibrinogênio/metabolismo , Humanos , Tromboelastografia
20.
J Thromb Haemost ; 20(5): 1223-1235, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35146910

RESUMO

BACKGROUND: Platelets contain a high amount of potentially active A subunit dimer of coagulation factor XIII (cellular FXIII; cFXIII). It is of cytoplasmic localization, not secreted, but becomes translocated to the surface of platelets activated by convulxin and thrombin (CVX+Thr). OBJECTIVE: To explore the difference in cFXIII translocation between receptor mediated and non-receptor mediated platelet activation and if translocation can also be detected on platelet-derived microparticles. Our aim was also to shed some light on the mechanism of cFXIII translocation. METHODS: Gel-filtered platelets were activated by CVX+Thr or Ca2+ -ionophore (calcimycin). The translocation of cFXIII and phosphatidylserine (PS) to the surface of activated platelets and platelet-derived microparticles was investigated by flow cytometry, immunofluorescence, and immune electron microscopy. Fluo-4-AM fluorescence was used for the measurement of intracellular Ca2+ concentration. RESULTS: Receptor mediated activation by CVX+Thr exposed cFXIII to the surface of more than 60% of platelets. Electron microscopy revealed microparticles with preserved membrane structure and microparticles devoid of labeling for membrane glycoprotein CD41a. cFXIII was observed on both types of microparticles but was more abundant in the absence of CD41a. Rhosin, a RhoA inhibitor, significantly decreased cFXIII translocation. Non-receptor mediated activation of platelets by calcimycin elevated intracellular Ca2+ concentration, induced the translocation of PS to the surface of platelets and microparticles, but failed to expose cFXIII. CONCLUSIONS: The elevation of intracellular Ca2+ concentration is sufficient for the translocation of PS from the internal layer of the membrane, while the translocation of cFXIII from the platelet cytoplasm requires additional receptor mediated mechanism(s).


Assuntos
Micropartículas Derivadas de Células , Fator XIII , Plaquetas , Calcimicina/farmacologia , Proteínas de Transporte , Humanos , Fosfatidilserinas , Ativação Plaquetária , Trombina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA