Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Heliyon ; 10(10): e30818, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38784535

RESUMO

Warfarin is a cardiovascular drug, used to treat or inhibit the coagulation of the blood. In this paper, we have studied the interaction of lysozyme with warfarin using several experimental (fluorescence, UV-visible and circular dichroism spectroscopies) and computational (molecular docking, molecular dynamics and DFT) approaches. Experimental studies have suggested that there was a strong interaction between lysozyme and warfarin. Inner filter effect played important role in fluorescence experimental data which show that the emission intensity of lysozyme decreased on the addition of warfarin, however, after inner filter effect correction the actual outcome turned out be the fluorescence enhancement. The extent of binding, increased with temperature rise. The interaction was primarily taken place via the dominance of hydrophobic forces. Small amount of warfarin didn't influence the secondary structure of lysozyme; however, the higher concentration of warfarin caused a decrease in the helicity of the protein and a consequent partial unfolding. Molecular docking studies were also performed which revealed that warfarin binds with lysozyme mainly with hydrophobic forces along with a significant contribution of hydrogen bonding. The flexibility of warfarin played important role in fitting the molecule into the binding pocket of lysozyme. Frontier molecular orbitals of warfarin, using DFT, in free as well as complexed form have also been calculated and discussed. Molecular dynamics simulations of unbound and warfarin bound lysozyme reveal a stable complex with slightly higher RMSD values in the presence of warfarin. Despite slightly increased RMSF values, the overall compactness and folding properties remain consistent, emphasizing strong binding towards lysozyme through the results obtained from intermolecular hydrogen bonding analysis. Essential dynamics analysis suggests warfarin induces slight structural changes without significantly altering the conformation, additionally supported by SASA patterns. Aside from the examination of global and essential motion, the MM/PBSA-based analysis of binding free energy elucidates the significant binding of warfarin to lysozyme, indicating a binding free energy of -13.3471 kcal/mol.

2.
Neurosci Lett ; 833: 137826, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768940

RESUMO

Synucleins are pivotal in neurodegenerative conditions. Beta-synuclein (ß-synuclein) is part of the synuclein protein family alongside alpha-synuclein (α-synuclein) and gamma-synuclein (γ-synuclein). These proteins, found mainly in brain tissue and cancers, are soluble and unstructured. ß-synuclein shares significant similarity with α-synuclein, especially in their N-terminus, with a 90% match. However, their aggregation tendencies differ significantly. While α-synuclein aggregation is believed to be counteracted by ß-synuclein, which occurs in conditions like Parkinson's disease, ß-synuclein may counteract α-synuclein's toxic effects on the nervous system, offering potential treatment for neurodegenerative diseases. Under normal circumstances, ß-synuclein may guard against disease by interacting with α-synuclein. Yet, in pathological environments with heightened levels or toxic substances, it might contribute to disease. Our research aims to explore potential harmful mutations in the ß-synuclein using computational tools to predict their destabilizing impact on protein structure. Consensus analysis revealed rs1207608813 (A63P), rs1340051870 (S72F), and rs1581178262 (G36C) as deleterious. These findings highlight the intricate relationship between nsSNPs and protein function, shedding light on their potential implications in disease pathways. Understanding the structural consequences of nsSNPs is crucial for elucidating their role in pathogenesis and developing targeted therapeutic interventions. Our results offer a robust computational framework for identifying neurodegenerative disorder-related mutations from SNP datasets, potentially reducing the costs associated with experimental characterization.

3.
J Biomol Struct Dyn ; : 1-15, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486459

RESUMO

The opportunistic bacterium Acinetobacter baumannii, which belongs to ESKAPE group of pathogenic bacteria, is leading cause of infections associated with gram-negative bacteria. Acinetobacter baumannii causes severe diseases, such as VAP (ventilator-associated pneumonia), meningitis, and UTI (urinary tract infections) among the nosocomial infections contracted in hospitals. The high infection rate and growing resistance to the vast array of antibiotics makes it paramount to look for new therapeutic strategies against this pathogen. The most promising therapeutic targets are the proteins involved in the synthesis of peptidoglycan which is chief component of bacterial cell wall, MurE is one of those enzymes and is responsible for the addition of one unit of meso-diaminopimelic acid (meso-A2pm) to the nucleotide precursor, UDPMurNAc-L-Ala-D-Glu, and aids in the formation of crosslinker pentapeptide chain. The three-dimensional structure of MurE was modelled using homology modelling technique and then vHTS was performed using this model against Approved Drug Library on DrugRep server using AutoDock Vina. Out of 500 drug molecules, two were selected based on estimated binding affinity, interaction pattern, interacting residues, etc. The selected drug molecules are DB12887 (Tazemetostat) and DB13879 (Glecaprevir). Then, MD simulations were performed on native MurE and its complexes with ligands to examine their dynamical behaviour, stability, integrity, compactness, and folding properties. The protein-ligand complexes were then subjected to binding free energy calculations using the MM/PBSA-based binding free energy analysis and the values are -109.788 ± 8.03 and -152.753 ± 11.98 kcal for MurE-DB12887 and MurE-DB13879 complex, respectively. All the analysis performed on MD trajectories for the complexes of these ligands with protein provided plenty of dependable evidences to consider these molecules for inhibition of MurE enzyme from A. baumannii. Communicated by Ramaswamy H. Sarma.

4.
3 Biotech ; 14(3): 72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362590

RESUMO

The emergence of carbapenem-resistant Acinetobacter baumannii, a highly concerning bacterial species designated as a Priority 1: Critical pathogen by the WHO, has become a formidable global threat. In this study, we utilised computational methods to explore the potent molecules capable of inhibiting the IspC enzyme, which plays a crucial role in the methylerythritol 4-phosphate (MEP) biosynthetic pathway. Employing high-throughput virtual screening of small molecules from the Enamine library, we focused on the highly conserved substrate binding site of the DXR target protein, resulting in the identification of 1000 potential compounds. Among these compounds, we selected the top two candidates (Z2615855584 and Z2206320703) based on Lipinski's rule of Five and ADMET filters, along with FR900098, a known IspC inhibitor, and DXP, the substrate of IspC, for molecular dynamics (MD) simulations. The MD simulation trajectories revealed remarkable structural and thermodynamic stability, as well as strong binding affinity, for all the IspC-ligand complexes. Furthermore, binding free energy calculations based on MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) methodology demonstrated significant interactions between the selected ligand molecules and IspC. Taking into consideration all the aforementioned criteria, we suggest Z2206320703 as the potent lead candidate against IspC. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03923-w.

5.
Curr Res Struct Biol ; 7: 100127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322649

RESUMO

Acinetobacter baumannii is one of the emerging causes of hospital acquired infections and this bacterium, due to multi-drug resistant and Extensive Drug resistant has been able to develop resistance against the antimicrobial agents that are being used to eliminate it. A.baumannii has been the cause of death in immune compromised patients in hospitals. Hence it is the urgent need of time to find potential inhibitors for this bacterium to cease its virulence and affect its survival inside host organisms. The Dihydrofolate reductase enzyme, which is an important biocatalyst in the conversion of Dihydrofolate to Tetrahydrofolate, is an important drug target protein. In the present study high throughput screening is used to identify the inhibitors of this enzyme. The prioritized ligand molecular candidates identified through virtual screening for the substrate binding site of the predicted model are Z1447621107, Z2604448220 and Z1830442365. The Molecular Dynamics Simulation study suggests that potential inhibitor of the Dihydrofolate reductase enzyme would prevent bacteria from completing its life cycle, affecting its survival. Finally the complexes were analysed for binding free energy of the Dihydrofolate reductase enzyme complexes with the ligands.

6.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111145

RESUMO

Due to the multifarious nature of cancer, finding a single definitive cure for this dreadful disease remains an elusive challenge. The dysregulation of the apoptotic pathway or programmed cell death, governed by the Bcl-2 family of proteins plays a crucial role in cancer development and progression. Bcl-B stands out as a unique anti-apoptotic protein from the Bcl-2 family that selectively binds to Bax which inhibits its pro-apoptotic function. Although several inhibitors are reported for Bcl-2 family proteins, no specific inhibitors are available against the anti-apoptotic Bcl-B protein. This study aims to address this research gap by using virtual screening of an in-house library of phytochemicals from seven anti-cancer medicinal plants to identify lead molecules against Bcl-B protein. Through pharmacokinetic analysis and molecular docking studies, we identified three lead candidates (Enterolactone, Piperine, and Protopine) based on appreciable drug-likeliness, ADME properties, and binding affinity values. The identified molecules also exhibited specific interactions with critical amino acid residues of the binding cleft, highlighting their potential as lead candidates. Finally, molecular dynamics simulations and MM/PBSA based binding free energy analysis revealed that Enterolactone (CID_114739) and Piperine (CID_638024) molecules were on par with Obatoclax (CID_11404337), which is a known inhibitor of the Bcl-2 family proteins.Communicated by Ramaswamy H. Sarma.

7.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834259

RESUMO

The coexistence of ceftazidime, which is a popular third-generation of cephalosporin antibiotic, with ubiquitous paracetamol or acetaminophen, is very likely because the latter is given to the patients to reduce fever due to bacterial infection along with an antibiotic such as the former. Therefore, in this study, we investigated the detailed binding of ceftazidime with plasma protein, human serum albumin (HSA), in the absence and presence of paracetamol using spectroscopic techniques such as fluorescence, UV-visible, and circular dichroism, along with in silico methods such as molecular docking, molecular dynamics simulations, and MM/PBSA-based binding free energy analysis. The basic idea of the interaction was attained by using UV-visible spectroscopy. Further, fluorescence spectroscopy revealed that there was a fair interaction between ceftazidime and HSA, and the mechanism of the quenching was a dynamic one, i.e., the quenching constant increased with increasing temperature. The interaction was, primarily, reinforced by hydrophobic forces, which resulted in the partial unfolding of the protein. Low concentrations of paracetamol were ineffective in affecting the binding of ceftazidime with has; although, a decrease in the quenching and binding constants was observed in the presence of high concentrations of the former. Competitive binding site experiments using warfarin and ibuprofen as site markers revealed that ceftazidime neither binds at drug site 1 or at drug site 2, articulating another binding site, which was confirmed by molecular docking simulations.


Assuntos
Acetaminofen , Ceftazidima , Humanos , Ceftazidima/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Acetaminofen/farmacologia , Termodinâmica , Antibacterianos/farmacologia , Antibacterianos/química , Sítios de Ligação , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Dicroísmo Circular , Anti-Inflamatórios não Esteroides
8.
J Biomol Struct Dyn ; : 1-10, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490027

RESUMO

Acinetobacter baumannii is an ESKAPE pathogen that causes endocarditis, pneumonia, blood infections, urinary tract infections, and several other illnesses. In addition, it is mainly responsible for nosocomial infection-related mortality. Gram-negative A. baumannii bacterium (AYE Strain) has high MDR and XDR levels. Due to its function in synthesizing purines and amino acids, folic acid is a significant molecule necessary for the growth of bacteria. The metabolic pathway of folate production is therefore a potential therapeutic target to inhibit bacterial growth. In the current study, the three-dimensional model of 6-Hydroxy-methyl dihydropterinpyrophosphokinase (HPPK) was predicted and subsequently processed through a virtual high throughput screening (vHTS) against compounds from Enamine HTSC library, that could bind to its active site. Three lead candidates (Z73322064, Z354558542, and Z906123504) and a control molecule (7,8 dihydro-7,7-dimethyl-6-hydroxymethlypterin; Accession Number: DB02278) were identified using several screening criteria namely estimated binding affinity, estimated inhibition constant, drug-like properties, ADME properties, mode of binding, and interaction patterns of the screened compounds. The physiological behavior of ligand binding on the HPPK enzyme was then studied using molecular dynamics simulations of apo and ligand bound complexes. This study proposed the following three molecules: Z73322064, Z354338542, and Z906123504 as promising lead candidates against the substrate-binding site of the HPPK enzyme from A. baumannii using global, essential dynamics studies along with MM/PBSA based binding free energy analysis.Communicated by Ramaswamy H. Sarma.

9.
J Mol Model ; 29(6): 188, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37225922

RESUMO

CONTEXT: Acinetobacter baumannii, one of the critical ESKAPE pathogens, is a highly resilient, multi-drug-resistant, Gramnegative, rod-shaped, highly pathogenic bacteria. It is responsible for almost 1-2% of all hospital-borne infections in immunocompromised patients and causes community outbreaks. Because of its resilience and MDR characteristics, looking for new strategies to check the infections related to this pathogen becomes paramount. The enzymes involved in the peptidoglycan biosynthetic pathway are attractive and the most promising drug targets. They contribute to the formation of the bacterial envelope and help to maintain the rigidity and integrity of the cell. The MurI (glutamate racemase) is one of the crucial enzymes that aid in the formation of the pentapeptide responsible for the interlinkage of peptidoglycan chains. It converts L-glutamate to D-glutamate, which is required to synthesise the pentapeptide chain. METHODS: In this study, the MurI protein of A. baumannii (strain AYE) was modelled and subjected to high-throughput virtual screening against the enamine-HTSC library, taking UDP-MurNAc-Ala binding site as the targeted site. Four ligand molecules, Z1156941329 (N-(1-methyl-2-oxo-3,4-dihydroquinolin-6-yl)-1-phenyl-3,4-dihydro-1H-isoquinoline-2-carboxamide), Z1726360919 (1-[2-[3-(benzimidazol-1-ylmethyl)piperidin-1-yl]-2-oxo-1-phenylethyl]piperidin-2-one), Z1920314754 (N-[[3-(3-methylphenyl)phenyl]methyl]-8-oxo-2,7-diazaspiro[4.4]nonane-2-carboxamide) and Z3240755352 (4R)-4-(2,5-difluorophenyl)-1-(4-fluorophenyl)-1,3a,4,5,7,7a-hexahydro-6H-pyrazolo[3,4-b]pyridin-6-one), were identified to be the lead candidates based on Lipinski's rule of five, toxicity, ADME properties, estimated binding affinity and intermolecular interactions. The complexes of these ligands with the protein molecule were then subjected to MD simulations to scrutinise their dynamic behaviour, structural stability and effects on protein dynamics. The molecular mechanics/Poisson-Boltzmann surface area-based binding free energy analysis was also performed to compute the binding free energy of protein-ligand complexes, which offered the following values -23.32 ± 3.04 kcal/mol, -20.67 ± 2.91kcal/mol, -8.93 ± 2.90 kcal/mol and -26.73 ± 2.95 kcal/mol for MurI-Z1726360919, MurI-Z1156941329, MurI-Z3240755352 and MurI-Z3240755354 complexes respectively. Together, the results from various computational analyses utilised in this study proposed that Z1726360919, Z1920314754 and Z3240755352 could act as potential lead molecules to suppress the function of MurI protein from Acinetobacter baumannii.


Assuntos
Acinetobacter baumannii , Isomerases de Aminoácido , Humanos , Ligantes , Peptidoglicano , Ácido Glutâmico
10.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049745

RESUMO

The interaction of indomethacin with human serum albumin (HSA) has been studied here considering the primary and secondary binding sites. The Stern-Volmer plots were linear in the lower concentration range of indomethacin while a downward curvature was observed in the higher concentration range, suggesting the presence of more than one binding site for indomethacin inside HSA due to which the microenvironment of the fluorophore changed slightly and some of its fraction was not accessible to the quencher. The Stern-Volmer quenching constants (KSV) for the primary and secondary sites were calculated from the two linear portions of the Stern-Volmer plots. There was around a two-fold decrease in the quenching constants for the low-affinity site as compared to the primary binding site. The interaction takes place via a static quenching mechanism and the KSV decreases at both primary and secondary sites upon increasing the temperature. The binding constants were also evaluated, which show strong binding at the primary site and fair binding at the secondary site. The binding was thermodynamically favorable with the liberation of heat and the ordering of the system. In principle, hydrogen bonding and Van der Waals forces were involved in the binding at the primary site while the low-affinity site interacted through hydrophobic forces only. The competitive binding was also evaluated using warfarin, ibuprofen, hemin, and a warfarin + hemin combination as site markers. The binding profile remained unchanged in the presence of ibuprofen, whereas it decreased in the presence of both warfarin and hemin with a straight line in the Stern-Volmer plots. The reduction in the binding was at a maximum when both warfarin and hemin were present simultaneously with the downward curvature in the Stern-Volmer plots at higher concentrations of indomethacin. The secondary structure of HSA also changes slightly in the presence of higher concentrations of indomethacin. Molecular dynamics simulations were performed at the primary and secondary binding sites of HSA which are drug site 1 (located in the subdomain IIA of the protein) and the hemin binding site (located in subdomain IB), respectively. From the results obtained from molecular docking and MD simulation, the indomethacin molecule showed more binding affinity towards drug site 1 followed by the other two sites.


Assuntos
Indometacina , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Ligação Proteica , Ibuprofeno , Varfarina , Hemina/metabolismo , Sítios de Ligação , Termodinâmica , Espectrometria de Fluorescência , Dicroísmo Circular
11.
Curr Res Struct Biol ; 5: 100096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895415

RESUMO

A. baumannii is a ubiquitously found gram-negative, multi-drug resistant bacterial species from the ESKAPE family of pathogens known to be the causative agent for hospital-acquired infections such as pneumonia, meningitis, endocarditis, septicaemia and urinary tract infections. A. baumannii is implicated as a contributor to bloodstream infections in approximately 2% of all worldwide infections. Hence, exploring novel therapeutic agents against the bacterium is essential. LpxA or UDP-N-acetylglucosamine acetyltransferase is an essential enzyme important in Lipid A biosynthesis which catalyses the reversible transfer of an acetyl group on the glucosamine 3-OH of the UDP-GlcNAc which is a crucial step in the biosynthesis of the protective Lipopolysaccharides (LPS) layer of the bacteria which upon disruption can lead to the elimination of the bacterium which delineates LpxA as an appreciable drug target from A. baumannii. The present study performs high throughput virtual screening of LpxA against the enamine-HTSC-large-molecule library and performs toxicity and ADME screening to identify the three promising lead molecules subjected to molecular dynamics simulations. Global and essential dynamics analysis of LpxA and its complexes along with FEL and MM/PBSA based binding free energy delineate Z367461724 and Z219244584 as potential inhibitors against LpxA from A. baumannii.

12.
J Biomol Struct Dyn ; 41(21): 11598-11611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36752319

RESUMO

The advent of multi drug resistance and extensive-drug resistance among various pathogens has caused a rise in nosocomial infections, which in turn has led to rising hospital-acquired infection-related mortality rates. Amongst them, carbapenem-resistant Acinetobacter baumannii is one of the most notorious bacterial species, categorized as a Priority 1: Critical pathogen by the WHO. Therefore, the discovery and development of novel antibiotics, as well as the identification of potential inhibitors, have become the need of the hour. In this study, we have employed computational methods to explore and identify molecules capable of inhibiting enzymes essential in the methylerythritol 4-phosphate (MEP) biosynthetic pathway. The high throughput virtual screening of small molecules (Enamine Advanced Collection (AC) library) against the highly conserved substrate-binding site of the DXS target protein provided us with a total of 1000 molecules. The top four potential candidate molecules, namely-Z3353989070, Z3353989049, Z2295848528, and Z1685501455, alongside fluoropyruvate (control), a known inhibitor of DXS, was chosen for a molecular dynamic simulation study. The molecular dynamic simulation trajectories suggested high structural and thermodynamical stability and strong binding affinity of all the DXS-ligand complexes. Moreover, the MM/PBSA-based binding free energy calculations also exhibited strong interactions of the selected ligand molecules with DXS. In conclusion, we have found that all four molecules displayed better results and stronger binding affinity than the control. In the end, based on all the above-mentioned criteria, we have proposed Z3353989049 to be the promising lead candidate against DXS from A. baumannii.Communicated by Ramaswamy H. Sarma.


Assuntos
Acinetobacter baumannii , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Ligantes , Óxido Nítrico Sintase
13.
3 Biotech ; 13(1): 29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36597461

RESUMO

Sirtuins play an important role in signalling pathways associated with various metabolic regulations. They possess mono-ADP-ribosyltransferase or deacylase activity like demalonylase, deacetylase, depalmitoylase, demyristoylase and desuccinylase activity. Sirtuins are histone deacetylases which depends upon nicotinamide adenine dinucleotide (NAD) that deacetylate lysine residues. There are a total of seven human sirtuins that have been identified namely, SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6 and SIRT7. The subcellular location of mammalian sirtuins, SIRT1, SIRT6, and SIRT7 are in the nucleus; SIRT3, SIRT4, and SIRT5 are in mitochondria, and SIRT2 is in cytoplasm. Structurally sirtuins contains a N-terminal, a C-terminal and a Zn+ binding domain. The sirtuin family has been found to be crucial for maintaining lipid and glucose homeostasis, and also for regulating insulin secretion and sensitivity, DNA repair pathways, neurogenesis, inflammation, and ageing. Based on the literature, sirtuins are overexpressed and play an important role in tumorigenicity in various types of cancer such as non-small cell lung cancer, colorectal cancer, etc. In this review, we have discussed about the different types of human sirtuins along with their structural and functional features. We have also discussed about the various natural and synthetic regulators of sirtuin activities like resveratrol. Our overall study shows that the correct regulation of sirtuins can be a good target for preventing and treating various diseases for improving the human lifespan. To investigate the true therapeutic potential of sirtuin proteins and their efficacy in a variety of pathological diseases, a better knowledge of the link between the structure and function of sirtuin proteins would be necessary.

14.
J Biomol Struct Dyn ; 41(4): 1424-1436, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34963406

RESUMO

The main objective of the present study is to isolate and characterise the novel bioactive molecule, 2-methoxy mucic acid (4) from Rhizophora apiculate Blume under the Rhizophoraceae family. In this study, the 2-methoxy mucic acid (4) was isolated for the first time from the methanolic extract of the leaves of R. apiculata. Anticancer activity of 2-methoxy mucic acid (4) was evaluated against HeLa and MDA-MB-231 cancer cell lines and they displayed promising activity with IC50 values of 22.88283 ± 0.72 µg/ml in HeLa and 2.91925 ± 0.52 µg/ml in the case of MDA-MB-231, respectively. Furthermore, the antioxidant property of 2-methoxy mucic acid (4) was found to be (IC50) 21.361 ± 0.41 µg/ml. Apart from in vitro studies, we also performed extensive in silico studies (molecular docking and molecular dynamics simulation) on four critical antiapoptotic Bcl-2 family members (Bcl-2, Bcl-w, Bcl-xL and Bcl-B) towards 2-methoxy mucic acid (4). The results revealed that this molecule showed higher binding affinity towards Bcl-B protein (ΔG = -5.8 kcal/mol) and the structural stability of this protein was significantly improved upon binding of this molecule. The present study affords vital insights into the importance of 2-methoxy mucic acid (4) from R. apiculata. Furthermore, it opens the therapeutic route for the discovery of anticancer drugs. Research HighlightsThis is a first report on a bioactive compound identified and characterised; a novel 2-methoxy mucic acid derived from methanolic crude extract from the leaves of R. apiculata from ANI.Estimated binding free energy of 2-methoxy mucic acid is found to be -5.8 kcal/mol to the anti-apoptotic Bcl-B protein.2-methoxy mucic acid showed both significant anti-cancer and anti-oxidant activity.Communicated by Ramaswamy H. Sarma.


Assuntos
Antioxidantes , Rhizophoraceae , Antioxidantes/farmacologia , Rhizophoraceae/química , Rhizophoraceae/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Metanol
15.
J Biomol Struct Dyn ; 41(12): 5418-5435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35706070

RESUMO

Sortases are extracellular transpeptidases that play an essential role in the adhesion of secreted proteins to the peptidoglycan layer of the cell wall of Gram-negative bacteria. Sortases are an important drug target protein due to their involvement in synthesizing the peptidoglycan cell wall of Streptococcus pyogenes, and these are not found in Homo sapiens. In this study, initially, we have performed protein sequence analysis to understand the sequential properties of Sortase C. Next, a comparative protein modeling approach was used to predict the three-dimensional model of Sortase C based on the crystal structure of Sortase C from Streptococcus pneumoniae. Virtual screening with an in-house library of phytochemicals from Syzygium aromaticum and molecular docking studies were performed to identify the promising lead molecules. These compounds were also analyzed for their drug-like and pharmacokinetic properties. Subsequently, the protein-ligand complexes of the selected ligands were subjected to molecular dynamics (MD) simulations to investigate their dynamic behavior in physiological conditions. The global and essential dynamics analyses result implied that the Sortase C complexes of the proposed three lead candidates exhibited adequate stability during the MD simulations. Additionally, the three proposed molecules showed favorable MM/PBSA binding free energy values ranging from -13.8 +/- 9.41 to -56.6 +/- 8.82 kcal/mol. After an extensive computational investigation, we have identified three promising lead candidates (CID:13888122, CID:3694932 and CID:102445430) against Sortase C from S. pyogenes. The result obtained from these computational studies can be used to screen and develop the inhibitors against Sortase C from S. pyogenes.Communicated by Ramaswamy H. Sarma.


Assuntos
Streptococcus pyogenes , Syzygium , Humanos , Simulação de Acoplamento Molecular , Peptidoglicano , Simulação de Dinâmica Molecular
16.
Mol Divers ; 27(5): 1979-1999, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36190592

RESUMO

Acinetobacter baumannii belongs to the ESKAPE family of pathogens and is a multi-drug resistant, gram-negative bacteria which follows the anaerobic form of respiration. A. baumannii is known to be the causative agent of hospital-related infections such as pneumonia, meningitis, endocarditis, septicaemia and a plethora of infections such as urinary tract infections found primarily in immunocompromised patients. These attributes of A. baumannii make it a priority pathogen against which potential therapeutic agents need to be developed. A. baumannii employs the formation of a biofilm to insulate its colonies from the outer environment, which allows it to grow under harsh environmental conditions and develop resistance against various drug molecules. Acyl-homoserine lactone synthase (AHLS) is an enzyme involved in the quorum-sensing pathway in A. baumannii, which is responsible for the synthesis of signal molecules known as acyl-homoserine lactones, which trigger the signalling pathway to regulate the factors involved in biofilm formation and regulation. The present study utilised a homology-modelled structure of AHLS to virtually screen it against the ZINC in trial/FDA-approved drug molecule library to find a subset of potential lead candidates. These molecules were then filtered based on Lipinski's, toxicological and ADME properties, binding affinity, and interaction patterns to delineate lead molecules. Finally, three promising molecules were selected, and their estimated binding affinity values were corroborated using AutoDock 4.2. The identified molecules and a control molecule were subsequently subjected to MD simulations to mimic the physiological conditions of protein ligand-binding interaction under the influence of a GROMOS forcefield. The global and essential dynamics analyses and MM/PBSA based binding free energy computations suggested Droperidol and Cipargamin as potential inhibitors against the binding site of AHLS from A. baumannii. The binding free energy calculations based on the MM/PBSA method showed excellent results for Droperidol (- 50.02 ± 4.67 kcal/mol) and Cipargamin (- 42.29 ± 4.05 kcal/mol).


Assuntos
Acil-Butirolactonas , Droperidol , Humanos , Acil-Butirolactonas/metabolismo , Biofilmes , Percepção de Quorum
17.
Front Mol Biosci ; 10: 1327740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187092

RESUMO

Digitoxin is a cardiac glycoside used to treat heart failure and heart arrhythmia. However, its therapeutic concentration range is very narrow. High doses of digitoxin are associated with severe side effects; therefore, it is necessary to develop the delivery system which can control the plasma levels of it. In this context, the binding of lysozyme, an important protein having many applications, with digitoxin has been studied to see the ability of the former as a carrier. The studies were carried out using both experimental and computational methods. The intrinsic fluorescence of lysozyme increased on the addition of digitoxin. Fluorescence results suggested that there was a strong interaction between lysozyme and digitoxin which was favored, mainly, by hydrophobic forces. Further, digitoxin affected the secondary structure of lysozyme slightly by causing the partial unfolding of lysozyme. The preferred binding site of digitoxin within lysozyme was the large cavity of the protein. Molecular docking studies also established the principal role of hydrophobic forces in the binding with a significant support of hydrogen bonding. Frontier molecular orbitals of free digitoxin and in complexation with lysozyme were also computed and discussed. The findings from molecular dynamics simulation studies elucidate that, when contrasted with the first and third conformations of the digitoxin-bound lysozyme complex, the second conformation promotes structural stability, reduces flexibility, and enhances the compactness and folding properties of lysozyme. The overall study shows that lysozyme could act as a potential carrier for digitoxin in pharmaceutical formulations.

18.
IUCrdata ; 7(Pt 2): x220199, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36340871

RESUMO

In the title compound, C23H19NO5, the cyano group adopts an axial orientation and the ester group an equatorial orientation. The dihedral angle between the pendant phenyl group and the benzene ring of the fused-ring system is 25.97 (8)°. Intra-molecular O-H⋯O and C-H⋯O hydrogen bonds are observed and the packing is consolidated by C-H⋯O and C-H⋯π inter-actions.

19.
Comput Biol Chem ; 99: 107721, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35835027

RESUMO

Papain like protease (PLpro) is a cysteine protease from the coronaviridae family of viruses. Coronaviruses possess a positive sense, single-strand RNA, leading to the translation of two viral polypeptides containing viral structural, non-structural and accessory proteins. PLpro is responsible for the cleavage of nsp1-3 from the viral polypeptide. PLpro also possesses deubiquitinating and deISGlyating activity, which sequesters the virus from the host's immune system. This indispensable attribute of PLpro makes it a protein of interest as a drug target. The present study aims to analyze the structural influences of ligand binding on PLpro. First, PLpro was screened against the ZINC-in-trials library, from which four lead compounds were identified based on estimated binding affinity and interaction patterns. Next, based on molecular docking results, ZINC000000596945, ZINC000064033452 and VIR251 (control molecule) were subjected to molecular dynamics simulation. The study evaluated global and essential dynamics analyses utilising principal component analyses, dynamic cross-correlation matrix, free energy landscape and time-dependant essential dynamics to predict the structural changes observed in PLpro upon ligand binding in a simulated environment. The MM/PBSA-based binding free energy calculations of the two selected molecules, ZINC000000596945 (-41.23 ± 3.70 kcal/mol) and ZINC000064033452 (-25.10 ± 2.65 kcal/mol), displayed significant values which delineate them as potential inhibitors of PLpro from SARS-CoV-2.


Assuntos
COVID-19 , Papaína , Proteases Semelhantes à Papaína de Coronavírus , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Papaína/química , Papaína/genética , Papaína/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , SARS-CoV-2
20.
J Mol Graph Model ; 114: 108168, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35339024

RESUMO

A member of the ESKAPE family of pathogens, A. baumannii, is an opportunistic gram-negative multidrug-resistant bacterium. A. baumannii is a ubiquitous coccobacillus involved in various hospital-related infections such as wound infections, pneumonia, urinary tract infections, septicaemia, endocarditis and ventilator assisted pneumonia and accounts for approximately 1-2% of all nosocomial bloodstream infections; hence it becomes imperative to identify potential therapeutic agents against the dreadful pathogen. The quorum-sensing pathway becomes an attractive drug target due to its role in biofilm regulation and formation, which provides the bacteria insulation from the harsh environment. A crucial protein in biofilm formation and regulation is Acyl-homoserine-lactone synthase (AHLS), responsible for producing signal molecules that trigger the signalling pathway for biofilm formation and regulation. The current study modeled the three-dimensional structure of AHLS in A. baumannii (strain AYE) followed by high-throughput virtual screening of the enamine-AC small-molecule database to identify lead molecules against its acylated-ACP (Acyl Carrier Protein) substrate-binding site. Based on the estimated binding affinity, estimated inhibition constant, ADME analysis and interaction patterns of the screened molecules, three lead candidates (Z815888654, Z2416029019, Z3766992625) were identified along with a control molecule (J8-C8). These molecules were then subjected to molecular dynamics simulations where the physiological effect of ligand binding on the protein was virtually predicted and analysed. The MM/PBSA based binding free energy calculations showed favourable results for Z815888654 (-22.77 ± 2.94 kcal/mol), Z2416029019 (-33.68 ± 2.63 kcal/mol), Z3766992625 (-21.44 ± 3.40 kcal/mol). The study employed global and essential dynamics analyses, MM/PBSA based binding free energy, free energy landscape and dynamic cross-correlation matrix to suggest Z815888654, Z2416029019 and Z3766992625 as potential inhibitors against the acylated-ACP substrate-binding site in AHLS from A. baumannii.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/metabolismo , Acil-Butirolactonas/metabolismo , Homosserina , Simulação de Dinâmica Molecular , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA