Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Biochem ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323025

RESUMO

Changes in the absolute protein amounts of transcription factors are important for regulating gene expression during cell differentiation and in responses to changes in the cellular and extracellular environment. However, few studies have focused on the absolute quantification of mammalian transcription factors. In this study, we established an absolute quantification method for the transcription factors BACH1 and BACH2, which are expressed in B cells and regulated by direct heme binding. The method used purified recombinant proteins as controls in Western blotting and was applied to mouse naïve B cells in the spleen, as well as activated B cells and plasma cells. BACH1 was present in naïve B cells at approximately half the levels of BACH2. In activated B cells, BACH1 decreased compared to naïve B cells, while BACH2 increased. In plasma cells, BACH1 increased back to the same extent as in naïve B cells, while BACH2 was not detected. Their target genes Prdm1 and Hmox1 were highly induced in plasma cells. BACH1 was found to undergo degradation with lower concentrations of heme than BACH2. Therefore, BACH1 and BACH2 are similarly abundant in B cells but differ in heme sensitivity, potentially regulating gene expression differently depending on their heme responsiveness.

2.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G414-G423, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981617

RESUMO

Immunoglobulin A (IgA)-mediated mucosal immunity is important for the host because it contributes to reducing infection risk and to establishing host-microbe symbiosis. BTB and CNC homology 1 (Bach1) is a transcriptional repressor with physiological and pathophysiological functions that are of particular interest for their relation to gastrointestinal diseases. However, Bach1 effects on IgA-mediated mucosal immunity remain unknown. For this study using Bach1-deficient (Bach1-/-) mice, we investigated the function of Bach1 in IgA-mediated mucosal immunity. Intestinal mucosa, feces, and plasma IgA were examined using immunosorbent assay. After cell suspensions were prepared from Peyer's patches and colonic lamina propria, they were examined using flow cytometry. The expression level of polymeric immunoglobulin receptor (pIgR), which plays an important role in the transepithelial transport of IgA, was evaluated using Western blotting, quantitative real-time PCR, and immunohistochemistry. Although no changes in the proportions of IgA-producing cells were observed, the amounts of IgA in the intestinal mucosa were increased in Bach1-/- mice. Furthermore, plasma IgA was increased in Bach1-/- mice, but fecal IgA was decreased, indicating that Bach1-/- mice have abnormal secretion of IgA into the intestinal lumen. In fact, Bach1 deficiency reduced pIgR expression in colonic mucosa at both the protein and mRNA levels. In the human intestinal epithelial cell line LS174T, suppression of Bach1 reduced pIgR mRNA stability. In contrast, the overexpression of Bach1 increased pIgR mRNA stability. These results demonstrate that Bach1 deficiency causes abnormal secretion of IgA into the intestinal lumen via suppression of pIgR expression.NEW & NOTEWORTHY The transcriptional repressor Bach1 has been implicated in diverse intestinal functions, but the effects of Bach1 on IgA-mediated mucosal immunity remain unclear. We demonstrate here that Bach1 deficiency causes abnormal secretion of IgA into the intestinal lumen, although the proportions of IgA-producing cells were not altered. Furthermore, Bach1 regulates the expression of pIgR, which plays an important role in the transepithelial transport of IgA, at the posttranscriptional level.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Mucosa Intestinal , Camundongos Knockout , Receptores de Imunoglobulina Polimérica , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Camundongos , Humanos , Imunoglobulina A/metabolismo , Imunidade nas Mucosas , Camundongos Endogâmicos C57BL , Imunoglobulina A Secretora/metabolismo , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/imunologia , Regulação da Expressão Gênica
3.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673728

RESUMO

BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the metabolism of iron, heme and reactive oxygen species. While BACH1 is rapidly degraded when it is bound to heme, it remains unclear how BACH1 degradation is regulated under other conditions. We found that FBXO22, a ubiquitin ligase previously reported to promote BACH1 degradation, polyubiquitinated BACH1 only in the presence of heme in a highly purified reconstitution assay. In parallel to this regulatory mechanism, TANK binding kinase 1 (TBK1), a protein kinase that activates innate immune response and regulates iron metabolism via ferritinophagy, was found to promote BACH1 degradation when overexpressed in 293T cells. While TBK1 phosphorylated BACH1 at multiple serine and threonine residues, BACH1 degradation was observed with not only the wild-type TBK1 but also catalytically impaired TBK1. The BACH1 degradation in response to catalytically impaired TBK1 was not dependent on FBXO22 but involved both autophagy-lysosome and ubiquitin-proteasome pathways judging from its suppression by using inhibitors of lysosome and proteasome. Chemical inhibition of TBK1 in hepatoma Hepa1 cells showed that TBK1 was not required for the heme-induced BACH1 degradation. Its inhibition in Namalwa B lymphoma cells increased endogenous BACH1 protein. These results suggest that TBK1 promotes BACH1 degradation in parallel to the FBXO22- and heme-dependent pathway, placing BACH1 as a downstream effector of TBK1 in iron metabolism or innate immune response.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas F-Box , Heme , Proteínas Serina-Treonina Quinases , Proteólise , Receptores Citoplasmáticos e Nucleares , Humanos , Heme/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Células HEK293 , Ubiquitinação , Linhagem Celular Tumoral , Lisossomos/metabolismo , Autofagia , Complexo de Endopeptidases do Proteassoma/metabolismo
4.
Blood Adv ; 7(18): 5409-5420, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099686

RESUMO

Radioulnar synostosis with amegakaryocytic thrombocytopenia (RUSAT) is an inherited bone marrow failure syndrome characterized by the congenital fusion of the forearm bones. RUSAT is largely caused by missense mutations that are clustered in a specific region of the MDS1 and EVI1 complex locus (MECOM). EVI1, a transcript variant encoded by MECOM, is a zinc finger transcription factor involved in hematopoietic stem cell maintenance that induce leukemic transformation when overexpressed. Mice with exonic deletions in Mecom show reduced hematopoietic stem and progenitor cells (HSPCs). However, the pathogenic roles of RUSAT-associated MECOM mutations in vivo have not yet been elucidated. To investigate the impact of the RUSAT-associated MECOM mutation on the phenotype, we generated knockin mice harboring a point mutation (translated into EVI1 p.H752R and MDS1-EVI1 p.H942R), which corresponds to an EVI1 p.H751R and MDS1-EVI1 p.H939R mutation identified in a patient with RUSAT. Homozygous mutant mice died at embryonic day 10.5 to 11.5. Heterozygous mutant mice (Evi1KI/+ mice) grew normally without radioulnar synostosis. Male Evi1KI/+ mice, aged between 5 and 15 weeks, exhibited lower body weight, and those aged ≥16 weeks showed low platelet counts. Flow cytometric analysis of bone marrow cells revealed a decrease in HSPCs in Evi1KI/+ mice between 8 and 12 weeks. Moreover, Evi1KI/+ mice showed delayed leukocyte and platelet recovery after 5-fluorouracil-induced myelosuppression. These findings suggest that Evi1KI/+ mice recapitulate the bone marrow dysfunction in RUSAT, similar to that caused by loss-of-function Mecom alleles.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Masculino , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Proteína do Locus do Complexo MDS1 e EVI1/genética , Fatores de Transcrição/genética , Células-Tronco Hematopoéticas , Mutação
5.
Exp Hematol ; 118: 21-30, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481429

RESUMO

Although establishment and maintenance of mitochondria are essential for the production of massive amounts of heme in erythroblasts, mitochondria must be degraded upon terminal differentiation to red blood cells (RBCs), thus creating a biphasic regulatory process. Previously, we reported that iron deficiency in mice promotes mitochondrial retention in RBCs, suggesting that a proper amount of iron and/or heme is necessary for the degradation of mitochondria during erythroblast maturation. Because the transcription factor GATA1 regulates autophagy in erythroid cells, which involves mitochondrial clearance (mitophagy), we investigated the relationship between iron or heme and mitophagy by analyzing the expression of genes related to GATA1 and autophagy and the impact of iron or heme restriction on the amount of mitochondria. We found that heme promotes the expression of GATA1-regulated mitophagy-related genes and the induction of mitophagy. GATA1 might induce the expression of the autophagy-related genes Atg4d and Stk11 for mitophagy through a heme-dependent mechanism in murine erythroleukemia (MEL) cells and a genetic rescue system with G1E-ER-GATA1 erythroblast cells derived from Gata1-null murine embryonic stem cells. These results provide evidence for a biphasic mechanism in which mitochondria are essential for heme generation, and the heme generated during differentiation promotes mitophagy and mitochondrial disposal. This mechanism provides a molecular framework for understanding this fundamentally important cell biological process.


Assuntos
Heme , Mitofagia , Camundongos , Animais , Heme/metabolismo , Diferenciação Celular , Células Eritroides/metabolismo , Ferro/metabolismo
6.
Cell Death Dis ; 12(4): 332, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782392

RESUMO

Ferroptosis regulated cell death due to the iron-dependent accumulation of lipid peroxide. Ferroptosis is known to constitute the pathology of ischemic diseases, neurodegenerative diseases, and steatohepatitis and also works as a suppressing mechanism against cancer. However, how ferroptotic cells affect surrounding cells remains elusive. We herein report the transfer phenomenon of lipid peroxidation and cell death from ferroptotic cells to nearby cells that are not exposed to ferroptotic inducers (FINs). While primary mouse embryonic fibroblasts (MEFs) and NIH3T3 cells contained senescence-associated ß-galactosidase (SA-ß-gal)-positive cells, they were decreased upon induction of ferroptosis with FINs. The SA-ß-gal decrease was inhibited by ferroptotic inhibitors and knockdown of Atg7, pointing to the involvement of lipid peroxidation and activated autophagosome formation during ferroptosis. A transfer of cell culture medium of cells treated with FINs, type 1 or 2, caused the reduction in SA-ß-gal-positive cells in recipient cells that had not been exposed to FINs. Real-time imaging of Kusabira Orange-marked reporter MEFs cocultured with ferroptotic cells showed the generation of lipid peroxide and deaths of the reporter cells. These results indicate that lipid peroxidation and its aftereffects propagate from ferroptotic cells to surrounding cells, even when the surrounding cells are not exposed to FINs. Ferroptotic cells are not merely dying cells but also work as signal transmitters inducing a chain of further ferroptosis.


Assuntos
Autofagia/genética , Morte Celular/genética , Ferroptose/genética , Peroxidação de Lipídeos/genética , Animais , Humanos , Camundongos
7.
Nat Immunol ; 19(10): 1059-1070, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250186

RESUMO

Elucidation of how the differentiation of hematopoietic stem and progenitor cells (HSPCs) is reconfigured in response to the environment is critical for understanding the biology and disorder of hematopoiesis. Here we found that the transcription factors (TFs) Bach2 and Bach1 promoted erythropoiesis by regulating heme metabolism in committed erythroid cells to sustain erythroblast maturation and by reinforcing erythroid commitment at the erythro-myeloid bifurcation step. Bach TFs repressed expression of the gene encoding the transcription factor C/EBPß, as well as that of its target genes encoding molecules important for myelopoiesis and inflammation; they achieved the latter by binding to their regulatory regions also bound by C/EBPß. Lipopolysaccharide diminished the expression of Bach TFs in progenitor cells and promoted myeloid differentiation. Overexpression of Bach2 in HSPCs promoted erythroid development and inhibited myelopoiesis. Knockdown of BACH1 or BACH2 in human CD34+ HSPCs impaired erythroid differentiation in vitro. Thus, Bach TFs accelerate erythroid commitment by suppressing the myeloid program at steady state. Anemia of inflammation and myelodysplastic syndrome might involve reduced activity of Bach TFs.


Assuntos
Anemia/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Eritropoese/fisiologia , Anemia/etiologia , Animais , Diferenciação Celular/fisiologia , Células Eritroides/citologia , Células Eritroides/metabolismo , Humanos , Infecções/complicações , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/metabolismo
8.
Sci Rep ; 8(1): 8278, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844341

RESUMO

In animal regeneration, control of position-dependent cell proliferation is crucial for the complete restoration of patterned appendages in terms of both, shape and size. However, detailed mechanisms of this process are largely unknown. In this study, we identified leucine/glutamine and v-ATPase/lysosomal acidification, via mechanistic target of rapamycin complex 1 (mTORC1) activation, as effectors of amputation plane-dependent zebrafish caudal fin regeneration. mTORC1 activation, which functions in cell proliferation, was regulated by lysosomal acidification possibly via v-ATPase activity at 3 h post amputation (hpa). Inhibition of lysosomal acidification resulted in reduced growth factor-related gene expression and suppression of blastema formation at 24 and 48 hpa, respectively. Along the proximal-distal axis, position-dependent lysosomal acidification and mTORC1 activation were observed from 3 hpa. We also report that Slc7a5 (L-type amino acid transporter), whose gene expression is position-dependent, is necessary for mTORC1 activation upstream of lysosomal acidification during fin regeneration. Furthermore, treatment with leucine and glutamine, for both proximal and distal fin stumps, led to an up-regulation in cell proliferation via mTORC1 activation, indicating that leucine/glutamine signaling possesses the ability to change the position-dependent regeneration. Our findings reveal that leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent zebrafish fin regeneration.


Assuntos
Nadadeiras de Animais/fisiologia , Regeneração/fisiologia , Cicatrização/fisiologia , Animais , Autofagia/fisiologia , Proliferação de Células/fisiologia , Glutamina/metabolismo , Concentração de Íons de Hidrogênio , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Leucina/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Peixe-Zebra/metabolismo
9.
J Immunol ; 200(8): 2882-2893, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29540581

RESUMO

BTB and CNC homology 2 (Bach2) is a transcriptional repressor that is required for the formation of the germinal center (GC) and reactions, including class switch recombination and somatic hypermutation of Ig genes in B cells, within the GC. Although BCR-induced proliferation is essential for GC reactions, the function of Bach2 in regulating B cell proliferation has not been elucidated. In this study, we demonstrate that Bach2 is required to sustain high levels of B cell proliferation in response to BCR signaling. Following BCR engagement in vitro, B cells from Bach2-deficient (Bach2-/-) mice showed lower incorporation of BrdU and reduced cell cycle progression compared with wild-type cells. Bach2-/- B cells also underwent increased apoptosis, as evidenced by an elevated frequency of sub-G1 cells and early apoptotic cells. Transcriptome analysis of BCR-engaged B cells from Bach2-/- mice revealed reduced expression of the antiapoptotic gene Bcl2l1 encoding Bcl-xL and elevated expression of cyclin-dependent kinase inhibitor (CKI) family genes, including Cdkn1a, Cdkn2a, and Cdkn2b Reconstitution of Bcl-xL expression partially rescued the proliferation defect of Bach2-/- B cells. Chromatin immunoprecipitation experiments showed that Bach2 bound to the CKI family genes, indicating that these genes are direct repression targets of Bach2. These findings identify Bach2 as a requisite factor for sustaining high levels of BCR-induced proliferation, survival, and cell cycle progression, and it promotes expression of Bcl-xL and repression of CKI genes. BCR-induced proliferation defects may contribute to the impaired GC formation observed in Bach2-/- mice.


Assuntos
Linfócitos B/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Ativação Linfocitária/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proliferação de Células , Proteínas Inibidoras de Quinase Dependente de Ciclina/imunologia , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/imunologia
10.
Cell Rep ; 21(12): 3354-3363, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262316

RESUMO

S-adenosylmethionine (SAM) is an important metabolite as a methyl-group donor in DNA and histone methylation, tuning regulation of gene expression. Appropriate intracellular SAM levels must be maintained, because methyltransferase reaction rates can be limited by SAM availability. In response to SAM depletion, MAT2A, which encodes a ubiquitous mammalian methionine adenosyltransferase isozyme, was upregulated through mRNA stabilization. SAM-depletion reduced N6-methyladenosine (m6A) in the 3' UTR of MAT2A. In vitro reactions using recombinant METTL16 revealed multiple, conserved methylation targets in the 3' UTR. Knockdown of METTL16 and the m6A reader YTHDC1 abolished SAM-responsive regulation of MAT2A. Mutations of the target adenine sites of METTL16 within the 3' UTR revealed that these m6As were redundantly required for regulation. MAT2A mRNA methylation by METTL16 is read by YTHDC1, and we suggest that this allows cells to monitor and maintain intracellular SAM levels.


Assuntos
Metionina Adenosiltransferase/genética , Metiltransferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Processamento de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , S-Adenosilmetionina/metabolismo , Regiões 3' não Traduzidas , Animais , Células HEK293 , Células HeLa , Humanos , Metionina Adenosiltransferase/metabolismo , Metilação , Metiltransferases/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Processamento Pós-Transcricional do RNA , Fatores de Processamento de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA