Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Environ Virol ; 16(1): 38-49, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168848

RESUMO

During the COVID-19 pandemic, wastewater-based epidemiology (WBE) and clinical surveillance have been used as tools for analyzing the circulation of SARS-CoV-2 in the community, but both approaches can be strongly influenced by some sources of variability. From the challenging perspective of integrating environmental and clinical data, we performed a correlation analysis between SARS-CoV-2 concentrations in raw sewage and incident COVID-19 cases in areas served by medium-size wastewater treatment plants (WWTPs) from 2021 to 2023. To this aim, both datasets were adjusted for several sources of variability: WBE data were adjusted for factors including the analytical protocol, sewage flow, and population size, while clinical data adjustments considered the demographic composition of the served population. Then, we addressed the impact on the correlation of differences among sewerage networks and variations in the frequency and type of swab tests due to changes in political and regulatory scenarios. Wastewater and clinical data were significantly correlated when restrictive containment measures and limited movements were in effect (ρ = 0.50) and when COVID-19 cases were confirmed exclusively through molecular testing (ρ = 0.49). Moreover, a positive (although weak) correlation arose for WWTPs located in densely populated areas (ρ = 0.37) and with shorter sewerage lengths (ρ = 0.28). This study provides methodological approaches for interpreting WBE and clinical surveillance data, which could also be useful for other infections. Data adjustments and evaluation of possible sources of bias need to be carefully considered from the perspective of integrated environmental and clinical surveillance of infections.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Águas Residuárias , COVID-19/epidemiologia , Esgotos , Pandemias , RNA Viral
2.
Adv Exp Med Biol ; 1370: 19-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35699841

RESUMO

The availability of virucidal compounds to reduce the impact of respiratory viruses is a relevant topic for public health, especially during the recent coronavirus disease (COVID-19) pandemic. Antimicrobial properties of Xibornol are known since the 1970s, but its activity on viruses is currently little explored. In this study, Xibornol activity at a fixed concentration of 0.03 mg/100 ml has been evaluated on five respiratory viruses (Human Adenovirus 5, Human Rhinovirus type 13, Human Coronavirus 229E, Human Parainfluenza Virus type 1, and Human Respiratory Syncytial Virus) through in vitro experiments based on adapted European standard UNI EN 14476-20019. The experiments were carried out under two different environmental conditions, one with the addition of fetal bovine serum to simulate an in vivo condition (dirty condition) and the other without the addition of any organic substances (clean condition). The viral abatement of Xibornol (expressed as Log10 reduction - LR) was statistically significant under both clean and dirty environmental conditions. Namely, in clean condition, LR ranged from 2.67 to 3.84, while in the dirty one the abatement was slightly lower (from 1.75 to 3.03). Parainfluenza Virus and Human Adenovirus were most resistant compared to the other viruses. The obtained data confirmed Xibornol activity and its use as topic substance for viral inactivation to prevent upper respiratory tract disease.


Assuntos
Adenovírus Humanos , COVID-19 , Coronavirus Humano 229E , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Humanos , Vírus da Parainfluenza 1 Humana , Rhinovirus
3.
Artigo em Inglês | MEDLINE | ID: mdl-36554466

RESUMO

The current pandemic has provided an opportunity to test wastewater-based epidemiology (WBE) as a complementary method to SARS-CoV-2 monitoring in the community. However, WBE infection estimates can be affected by uncertainty factors, such as heterogeneity in analytical procedure, wastewater volume, and population size. In this paper, raw sewage SARS-CoV-2 samples were collected from four wastewater treatment plants (WWTPs) in Tuscany (Northwest Italy) between February and December 2021. During the surveillance period, viral concentration was based on polyethylene glycol (PEG), but its precipitation method was modified from biphasic separation to centrifugation. Therefore, in parallel, the recovery efficiency of each method was evaluated at lab-scale, using two spiking viruses (human coronavirus 229E and mengovirus vMC0). SARS-CoV-2 genome was found in 80 (46.5%) of the 172 examined samples. Lab-scale experiments revealed that PEG precipitation using centrifugation had the best recovery efficiency (up to 30%). Viral SARS-CoV-2 load obtained from sewage data, adjusted by analytical method and normalized by population of each WWTP, showed a good association with the clinical data in the study area. This study highlights that environmental surveillance data need to be carefully analyzed before their use in the WBE, also considering the sensibility of the analytical methods.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Esgotos , Calibragem , Monitoramento Ambiental , RNA Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA