Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
bioRxiv ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37546882

RESUMO

Alterations in three-dimensional (3D) genome structures are associated with cancer1-5. However, how genome folding evolves and diversifies during subclonal cancer progression in the native tissue environment remains unknown. Here, we leveraged a genome-wide chromatin tracing technology to directly visualize 3D genome folding in situ in a faithful Kras-driven mouse model of lung adenocarcinoma (LUAD)6, generating the first single-cell 3D genome atlas of any cancer. We discovered stereotypical 3D genome alterations during cancer development, including a striking structural bottleneck in preinvasive adenomas prior to progression to LUAD, indicating a stringent selection on the 3D genome early in cancer progression. We further showed that the 3D genome precisely encodes cancer states in single cells, despite considerable cell-to-cell heterogeneity. Finally, evolutionary changes in 3D genome compartmentalization - partially regulated by polycomb group protein Rnf2 through its ubiquitin ligase-independent activity - reveal novel genetic drivers and suppressors of LUAD progression. Our results demonstrate the importance of mapping the single-cell cancer 3D genome and the potential to identify new diagnostic and therapeutic biomarkers from 3D genomic architectures.

2.
Cell ; 181(4): 832-847.e18, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32304665

RESUMO

Obesity is a major modifiable risk factor for pancreatic ductal adenocarcinoma (PDAC), yet how and when obesity contributes to PDAC progression is not well understood. Leveraging an autochthonous mouse model, we demonstrate a causal and reversible role for obesity in early PDAC progression, showing that obesity markedly enhances tumorigenesis, while genetic or dietary induction of weight loss intercepts cancer development. Molecular analyses of human and murine samples define microenvironmental consequences of obesity that foster tumorigenesis rather than new driver gene mutations, including significant pancreatic islet cell adaptation in obesity-associated tumors. Specifically, we identify aberrant beta cell expression of the peptide hormone cholecystokinin (Cck) in response to obesity and show that islet Cck promotes oncogenic Kras-driven pancreatic ductal tumorigenesis. Our studies argue that PDAC progression is driven by local obesity-associated changes in the tumor microenvironment and implicate endocrine-exocrine signaling beyond insulin in PDAC development.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Obesidade/metabolismo , Animais , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Progressão da Doença , Células Endócrinas/metabolismo , Glândulas Exócrinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Obesidade/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genética , Microambiente Tumoral/fisiologia , Neoplasias Pancreáticas
3.
Sci Transl Med ; 11(517)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694929

RESUMO

Small cell lung cancer (SCLC) is an aggressive lung cancer subtype with extremely poor prognosis. No targetable genetic driver events have been identified, and the treatment landscape for this disease has remained nearly unchanged for over 30 years. Here, we have taken a CRISPR-based screening approach to identify genetic vulnerabilities in SCLC that may serve as potential therapeutic targets. We used a single-guide RNA (sgRNA) library targeting ~5000 genes deemed to encode "druggable" proteins to perform loss-of-function genetic screens in a panel of cell lines derived from autochthonous genetically engineered mouse models (GEMMs) of SCLC, lung adenocarcinoma (LUAD), and pancreatic ductal adenocarcinoma (PDAC). Cross-cancer analyses allowed us to identify SCLC-selective vulnerabilities. In particular, we observed enhanced sensitivity of SCLC cells toward disruption of the pyrimidine biosynthesis pathway. Pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in this pathway, reduced the viability of SCLC cells in vitro and strongly suppressed SCLC tumor growth in human patient-derived xenograft (PDX) models and in an autochthonous mouse model. These results indicate that DHODH inhibition may be an approach to treat SCLC.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Terapia de Alvo Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/enzimologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Animais , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , DCMP Desaminase/metabolismo , Di-Hidro-Orotato Desidrogenase , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Neoplasias Pancreáticas/metabolismo , Pirimidinas/biossíntese , Carcinoma de Pequenas Células do Pulmão/patologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
4.
Nano Lett ; 18(4): 2195-2208, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29533667

RESUMO

Human pancreatic ductal adenocarcinoma (PDAC) contains a distinctively dense stroma that limits the accessibility of anticancer drugs, contributing to its poor overall prognosis. Nanoparticles can enhance drug delivery and retention in pancreatic tumors and have been utilized clinically for their treatment. In preclinical studies, various mouse models differentially recapitulate the microenvironmental features of human PDAC. Here, we demonstrate that through utilization of different organic cosolvents and by doping of a homopolymer of poly(ε-caprolactone), a diblock copolymer composition of poly(ethylene oxide)- block-poly(ε-caprolactone) may be utilized to generate biodegradable and nanoscale micelles with different physical properties. Noninvasive optical imaging was employed to examine the pharmacology and biodistribution of these various nanoparticle formulations in both allografted and autochthonous mouse models of PDAC. In contrast to the results reported with transplanted tumors, spherical micelles as large as 300 nm in diameter were found to extravasate in the autochthonous model, reaching a distance of approximately 20 µm from the nearest tumor cell clusters. A lipophilic platinum(IV) prodrug of oxaliplatin was further able to achieve a ∼7-fold higher peak accumulation and a ∼50-fold increase in its retention half-life in pancreatic tumors when delivered with 100 nm long worm-like micelles as when compared to the free drug formulation of oxaliplatin. Through further engineering of nanoparticle properties, as well as by widespread adoption of the autochthonous tumor model for preclinical testing, future therapeutic formulations may further enhance the targeting and penetration of anticancer agents to improve survival outcomes in PDAC.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico por imagem , Lactonas/análise , Nanopartículas/análise , Transplante de Neoplasias/diagnóstico por imagem , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Polietilenoglicóis/análise , Animais , Antineoplásicos/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Lactonas/farmacocinética , Camundongos , Camundongos Nus , Micelas , Neoplasias Experimentais/tratamento farmacológico , Imagem Óptica/métodos , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Polietilenoglicóis/farmacocinética
5.
Cancer Res ; 78(4): 985-1002, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29279356

RESUMO

Activating mutations in KRAS are the hallmark genetic alterations in pancreatic ductal adenocarcinoma (PDAC) and the key drivers of its initiation and progression. Longstanding efforts to develop novel KRAS inhibitors have been based on the assumption that PDAC cells are addicted to activated KRAS, but this assumption remains controversial. In this study, we analyzed the requirement of endogenous Kras to maintain survival of murine PDAC cells, using an inducible shRNA-based system that enables temporal control of Kras expression. We found that the majority of murine PDAC cells analyzed tolerated acute and sustained Kras silencing by adapting to a reversible cell state characterized by differences in cell morphology, proliferative kinetics, and tumor-initiating capacity. While we observed no significant mutational or transcriptional changes in the Kras-inhibited state, global phosphoproteomic profiling revealed significant alterations in cell signaling, including increased phosphorylation of focal adhesion pathway components. Accordingly, Kras-inhibited cells displayed prominent focal adhesion plaque structures, enhanced adherence properties, and increased dependency on adhesion for viability in vitro Overall, our results call into question the degree to which PDAC cells are addicted to activated KRAS, by illustrating adaptive nongenetic and nontranscriptional mechanisms of resistance to Kras blockade. However, by identifying these mechanisms, our work also provides mechanistic directions to develop combination strategies that can help enforce the efficacy of KRAS inhibitors.Significance: These results call into question the degree to which pancreatic cancers are addicted to KRAS by illustrating adaptive nongenetic and nontranscriptional mechanisms of resistance to Kras blockade, with implications for the development of KRAS inhibitors for PDAC treatment. Cancer Res; 78(4); 985-1002. ©2017 AACR.


Assuntos
Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/biossíntese , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Neoplasias Pancreáticas
6.
Nat Commun ; 8(1): 1090, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061961

RESUMO

Activating mutations in the proto-oncogene KRAS are a hallmark of pancreatic ductal adenocarcinoma (PDAC), an aggressive malignancy with few effective therapeutic options. Despite efforts to develop KRAS-targeted drugs, the absolute dependence of PDAC cells on KRAS remains incompletely understood. Here we model complete KRAS inhibition using CRISPR/Cas-mediated genome editing and demonstrate that KRAS is dispensable in a subset of human and mouse PDAC cells. Remarkably, nearly all KRAS deficient cells exhibit phosphoinositide 3-kinase (PI3K)-dependent mitogen-activated protein kinase (MAPK) signaling and induced sensitivity to PI3K inhibitors. Furthermore, comparison of gene expression profiles of PDAC cells retaining or lacking KRAS reveal a role of KRAS in the suppression of metastasis-related genes. Collectively, these data underscore the potential for PDAC resistance to even the very best KRAS inhibitors and provide insights into mechanisms of response and resistance to KRAS inhibition.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Benzimidazóis/farmacologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Variações do Número de Cópias de DNA/genética , Humanos , Immunoblotting , Indazóis/farmacologia , Camundongos , Morfolinas/farmacologia , Neoplasias Pancreáticas/genética , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas p21(ras)/genética , Purinas/farmacologia , Pirimidinas/farmacologia , Pirimidinonas/farmacologia , Quinazolinonas/farmacologia , Sulfonamidas/farmacologia , Tiazóis/farmacologia
7.
Nat Commun ; 7: 12685, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585860

RESUMO

Although it has become increasingly clear that cancers display extensive cellular heterogeneity, the spatial growth dynamics of genetically distinct clones within developing solid tumours remain poorly understood. Here we leverage mosaic analysis with double markers (MADM) to trace subclonal populations retaining or lacking p53 within oncogenic Kras-initiated lung and pancreatic tumours. In both models, p53 constrains progression to advanced adenocarcinomas. Comparison of lineage-related p53 knockout and wild-type clones reveals a minor role of p53 in suppressing cell expansion in lung adenomas. In contrast, p53 loss promotes both the initiation and expansion of low-grade pancreatic intraepithelial neoplasia (PanINs), likely through differential expression of the p53 regulator p19ARF. Strikingly, lineage-related cells are often dispersed in lung adenomas and PanINs, contrasting with more contiguous growth of advanced subclones. Together, these results support cancer type-specific suppressive roles of p53 in early tumour progression and offer insights into clonal growth patterns during tumour development.


Assuntos
Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Transgênicos , Células Tumorais Cultivadas
8.
Genesis ; 45(9): 593-605, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17868096

RESUMO

The Cre/loxP system has been used extensively for conditional mutagenesis in mice. Reporters of Cre activity are important for defining the spatial and temporal extent of Cre-mediated recombination. Here we describe mT/mG, a double-fluorescent Cre reporter mouse that expresses membrane-targeted tandem dimer Tomato (mT) prior to Cre-mediated excision and membrane-targeted green fluorescent protein (mG) after excision. We show that reporter expression is nearly ubiquitous, allowing visualization of fluorescent markers in live and fixed samples of all tissues examined. We further demonstrate that mG labeling is Cre-dependent, complementary to mT at single cell resolution, and distinguishable by fluorescence-activated cell sorting. Both membrane-targeted markers outline cell morphology, highlight membrane structures, and permit visualization of fine cellular processes. In addition to serving as a global Cre reporter, the mT/mG mouse may also be used as a tool for lineage tracing, transplantation studies, and analysis of cell morphology in vivo.


Assuntos
Marcação de Genes/métodos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Integrases/genética , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Clonagem Molecular , Embrião de Mamíferos , Citometria de Fluxo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Sequências de Repetição em Tandem/genética , Distribuição Tecidual
9.
Proc Natl Acad Sci U S A ; 104(11): 4495-500, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17360552

RESUMO

The initiation and progression of many human cancers involve either somatic activation of protooncogenes or inactivation of tumor-suppressor genes (TSGs) in sporadic cells. Although sporadic gain-of-function of protooncogenes has been successfully modeled in mice [e.g., Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001) Nature 410:1111-1116], generating a similar degree of sparseness of TSG loss-of-function remains a challenge. Here, we use mosaic analysis with double markers (MADM) to achieve TSG inactivation and concurrent labeling in sporadic somatic cells of mice, closely mimicking loss of heterozygosity as occurs in human cancers. As proof of principle, we studied the consequence of sporadic loss of p27kip1, a cyclin-dependent kinase inhibitor. MADM-mediated loss of p27kip1 results in mutant cell expansion markedly greater than that observed in conventional p27kip1 knockouts. Moreover, the direct comparison of WT and mutant cells at single-cell resolution afforded by MADM reveals that p27kip1 regulates organ size in vivo by cell-autonomous control of cell cycle exit timing. These studies establish MADM as a high-resolution method for modeling sporadic loss of heterozygosity in mice, providing insights into TSG function.


Assuntos
Perda de Heterozigosidade , Mosaicismo , Mutação , Animais , Linhagem da Célula , Proliferação de Células , Cerebelo/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Genes Supressores de Tumor , Técnicas Genéticas , Heterozigoto , Camundongos , Camundongos Knockout , Modelos Genéticos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA