Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188987, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717858

RESUMO

Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Ácido Cítrico/metabolismo , Neoplasias/patologia , Glicólise/fisiologia , Ciclo do Ácido Cítrico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral
2.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806215

RESUMO

Cancer metabolism has been of interest for decades; however, the recent development of sophisticated techniques such as metabolomics or lipidomics have significantly increased our understanding of processes taking place in tumour cells [...].


Assuntos
Metabolismo dos Lipídeos , Neoplasias , Humanos , Lipidômica , Metabolômica/métodos
3.
Cancers (Basel) ; 14(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35884486

RESUMO

Merkel cell carcinoma (MCC) is a rare but highly aggressive tumor of the skin with a poor prognosis. The factors driving this cancer must be better understood in order to discover novel targets for more effective therapies. In the search for targets, we followed our interest in citrate as a central and critical metabolite linked to fatty acid synthesis in cancer development. A key to citrate uptake in cancer cells is the high expression of the plasma membrane citrate transporter (pmCiC), which is upregulated in the different adenocarcinoma types tested so far. In this study, we show that the pmCiC is also highly expressed in Merkel cell carcinoma cell lines by western blot and human tissues by immunohistochemistry staining. In the presence of extracellular citrate, MCC cells show an increased proliferation rate in vitro; a specific pmCiC inhibitor (Na+-gluconate) blocks this citrate-induced proliferation. Furthermore, the 3D in vivo Chick Chorioallantoic Membrane (CAM) model showed that the application of Na+-gluconate also decreases Merkel cell carcinoma growth. Based on our results, we conclude that pmCiC and extracellular citrate uptake should be considered further as a potential novel target for the treatment of Merkel cell carcinoma.

5.
Curr Mol Med ; 22(6): 506-513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33653247

RESUMO

Brain tissue is known to have elevated citrate levels, necessary to regulate ion chelation, neuron excitability, and are also necessary for the supply of necessary energy substrates to neurons. Importantly, citrate also acts as a central substrate in cancer metabolism. Recent studies have shown that extracellular citrate levels in the brain undergo significant changes during tumor development and may play a dual role in tumor progression, as well as cancer cell aggressiveness. In the present article, we review available literature describing changes of citrate levels in brain tissue, blood, and cerebrospinal fluid, as well as intracellular alterations during tumor development before and after metastatic progression. Based on the available literature and our recent findings, we hypothesize that changes in extracellular citrate levels may be related to the increased consumption of this metabolite by cancer cells. Interestingly, cancerassociated cells, including reactive astrocytes, might be a source of citrate. Extracellular citrate uptake mechanisms, as well as potential citrate synthesis and release by surrounding stroma, could provide novel targets for anti-cancer treatments of primary brain tumors and brain metastases.


Assuntos
Neoplasias Encefálicas , Ácido Cítrico , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Citratos , Ácido Cítrico/metabolismo , Humanos , Neurônios/metabolismo
6.
Cancer Metastasis Rev ; 40(4): 1073-1091, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932167

RESUMO

It is well established that cancer cells acquire energy via the Warburg effect and oxidative phosphorylation. Citrate is considered to play a crucial role in cancer metabolism by virtue of its production in the reverse Krebs cycle from glutamine. Here, we review the evidence that extracellular citrate is one of the key metabolites of the metabolic pathways present in cancer cells. We review the different mechanisms by which pathways involved in keeping redox balance respond to the need of intracellular citrate synthesis under different extracellular metabolic conditions. In this context, we further discuss the hypothesis that extracellular citrate plays a role in switching between oxidative phosphorylation and the Warburg effect while citrate uptake enhances metastatic activities and therapy resistance. We also present the possibility that organs rich in citrate such as the liver, brain and bones might form a perfect niche for the secondary tumour growth and improve survival of colonising cancer cells. Consistently, metabolic support provided by cancer-associated and senescent cells is also discussed. Finally, we highlight evidence on the role of citrate on immune cells and its potential to modulate the biological functions of pro- and anti-tumour immune cells in the tumour microenvironment. Collectively, we review intriguing evidence supporting the potential role of extracellular citrate in the regulation of the overall cancer metabolism and metastatic activity.


Assuntos
Ácido Cítrico , Neoplasias , Citratos , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Humanos , Neoplasias/metabolismo , Fosforilação Oxidativa , Microambiente Tumoral/fisiologia
7.
Life Sci Alliance ; 4(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33758075

RESUMO

Citrate is important for lipid synthesis and epigenetic regulation in addition to ATP production. We have previously reported that cancer cells import extracellular citrate via the pmCiC transporter to support their metabolism. Here, we show for the first time that citrate is supplied to cancer by cancer-associated stroma (CAS) and also that citrate synthesis and release is one of the latter's major metabolic tasks. Citrate release from CAS is controlled by cancer cells through cross-cellular communication. The availability of citrate from CAS regulated the cytokine profile, metabolism and features of cellular invasion. Moreover, citrate released by CAS is involved in inducing cancer progression especially enhancing invasiveness and organ colonisation. In line with the in vitro observations, we show that depriving cancer cells of citrate using gluconate, a specific inhibitor of pmCiC, significantly reduced the growth and metastatic spread of human pancreatic cancer cells in vivo and muted stromal activation and angiogenesis. We conclude that citrate is supplied to tumour cells by CAS and citrate uptake plays a significant role in cancer metastatic progression.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Ácido Cítrico/metabolismo , Neoplasias Pancreáticas/metabolismo , Fibroblastos Associados a Câncer/fisiologia , Linhagem Celular Tumoral , Epigênese Genética , Humanos , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Células Estromais/metabolismo , Microambiente Tumoral/fisiologia , Neoplasias Pancreáticas
8.
Front Cell Dev Biol ; 8: 602476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425906

RESUMO

Cancer cells need excess energy and essential nutrients/metabolites not only to divide and proliferate but also to migrate and invade distant organs for metastasis. Fatty acid and cholesterol synthesis, considered a hallmark of cancer for anabolism and membrane biogenesis, requires citrate. We review here potential pathways in which citrate is synthesized and/or supplied to cancer cells and the impact of extracellular citrate on cancer cell metabolism and growth. Cancer cells employ different mechanisms to support mitochondrial activity and citrate synthesis when some of the necessary substrates are missing in the extracellular space. We also discuss the different transport mechanisms available for the entry of extracellular citrate into cancer cells and how citrate as a master metabolite enhances ATP production and fuels anabolic pathways. The available literature suggests that cancer cells show an increased metabolic flexibility with which they tackle changing environmental conditions, a phenomenon crucial for cancer cell proliferation and metastasis.

9.
Front Oncol ; 9: 522, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275855

RESUMO

We have recently discovered that cancer cells take up extracellular citrate through plasma membrane citrate transporter (pmCiC) and advantageously use citrate for their metabolism. Citrate uptake can be blocked with gluconate and this results in decreased tumor growth and altered metabolic characteristics of tumor tissue. Interestingly, gluconate, considered to be physiologically neutral, is incidentally used in medicine as a cation carrier, but not as a therapeutically active substance. In this review we discuss the results of our recent research with available literature and suggest that gluconate may be useful in the treatment of cancer.

10.
Cancer Res ; 78(17): 5177, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30115700
11.
Cancer Res ; 78(10): 2513-2523, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29510993

RESUMO

Glycolysis and fatty acid synthesis are highly active in cancer cells through cytosolic citrate metabolism, with intracellular citrate primarily derived from either glucose or glutamine via the tricarboxylic acid cycle. We show here that extracellular citrate is supplied to cancer cells through a plasma membrane-specific variant of the mitochondrial citrate transporter (pmCiC). Metabolomic analysis revealed that citrate uptake broadly affected cancer cell metabolism through citrate-dependent metabolic pathways. Treatment with gluconate specifically blocked pmCiC and decreased tumor growth in murine xenografts of human pancreatic cancer. This treatment altered metabolism within tumors, including fatty acid metabolism. High expression of pmCiC was associated with invasion and advanced tumor stage across many human cancers. These findings support the exploration of extracellular citrate transport as a novel potential target for cancer therapy.Significance: Uptake of extracellular citrate through pmCiC can be blocked with gluconate to reduce tumor growth and to alter metabolic characteristics of tumor tissue. Cancer Res; 78(10); 2513-23. ©2018 AACR.


Assuntos
Proteínas de Transporte de Ânions/antagonistas & inibidores , Proteínas de Transporte de Ânions/metabolismo , Proliferação de Células/efeitos dos fármacos , Ácido Cítrico/metabolismo , Gluconatos/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Ácidos Graxos/biossíntese , Glicólise/fisiologia , Humanos , Masculino , Camundongos , Transportadores de Ânions Orgânicos , Próstata/citologia , Próstata/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
12.
Anal Chem ; 86(18): 9186-95, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25152309

RESUMO

The effects of continuous water infusion on efficiency and repeatability of atmospheric pressure chemical ionization of both methyl chloroformate (MCF) and methoxime-trimethylsilyl (MO-TMS) derivatives of metabolites were evaluated using gas chromatography-time-of-flight mass spectrometry. Water infusion at a flow-rate of 0.4 mL/h yielded not only an average 16.6-fold increase in intensity of the quasimolecular ion for 20 MCF-derivatized metabolite standards through suppression of in-source fragmentation but also the most repeatable peak area integrals. The impact of water infusion was the greatest for dicarboxylic acids and the least for (hetero-) aromatic compounds. Water infusion also improved the ability to detect reliably fold changes as small as 1.33-fold for the same 20 MCF-derivatized metabolite standards spiked into a human serum extract. On the other hand, MO-TMS derivatives were not significantly affected by water infusion, neither in their fragmentation patterns nor with regard to the detection of differentially regulated compounds. As a proof of principle, we applied MCF derivatization and GC-APCI-TOFMS to the detection of changes in abundance of metabolites in pancreatic cancer cells upon treatment with 17-DMAG. Water infusion increased not only the number of metabolites identified via their quasimolecular ion but also the reproducibility of peak areas, thereby almost doubling the number of significantly regulated metabolites (false discovery rate < 0.05) to a total of 23.


Assuntos
Formiatos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica , Água/química , Área Sob a Curva , Pressão Atmosférica , Benzoquinonas/química , Linhagem Celular Tumoral , Formiatos/análise , Humanos , Lactamas Macrocíclicas/química , Oximas/análise , Oximas/metabolismo , Análise de Componente Principal , Curva ROC
13.
Neoplasia ; 14(10): 915-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23097626

RESUMO

The prognosis of patients suffering from pancreatic cancer is still poor and novel therapeutic options are urgently needed. Recently, the transcription factor signal transducer and activator of transcription 5b (STAT5b) was associated with tumor progression in human solid cancer. Hence, we assessed whether STAT5b might serve as an anticancer target in ductal pancreatic adenocarcinoma (DPAC). We found that nuclear expression of STAT5b can be detected in approximately 50% of DPAC. Blockade of STAT5b by stable shRNA-mediated knockdown showed no effects on tumor cell growth in vitro. However, inhibition of tumor cell motility was found even in response to stimulation with epidermal growth factor or interleukin-6. These findings were paralleled by a reduction of prometastatic and proangiogenic factors in vitro. Subsequent in vivo experiments revealed a strong growth inhibition on STAT5b blockade in subcutaneous and orthotopic models. These findings were paralleled by impaired tumor angiogenesis in vivo. In contrast to the subcutaneous model, the orthotopic model revealed a strong reduction of tumor cell proliferation that emphasizes the meaning of assessing targets in an appropriate microenvironment. Taken together, our results suggest that STAT5b might be a potential novel target for human DPAC.


Assuntos
Adenocarcinoma Mucinoso/secundário , Carcinoma Ductal Pancreático/secundário , Carcinoma Papilar/secundário , Neovascularização Patológica , Neoplasias Pancreáticas/patologia , Fator de Transcrição STAT5/metabolismo , Adenocarcinoma Mucinoso/irrigação sanguínea , Adenocarcinoma Mucinoso/metabolismo , Animais , Western Blotting , Carcinoma Ductal Pancreático/irrigação sanguínea , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Papilar/irrigação sanguínea , Carcinoma Papilar/metabolismo , Movimento Celular , Proliferação de Células , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Gradação de Tumores , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/metabolismo , Fosforilação , RNA Interferente Pequeno/genética , Fator de Transcrição STAT5/antagonistas & inibidores , Fator de Transcrição STAT5/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
14.
Mol Cancer Ther ; 10(11): 2157-67, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21885862

RESUMO

Activation of receptor tyrosine kinases, such as fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR), and VEGF receptor (VEGFR), has been implicated in tumor progression and metastasis in human pancreatic cancer. In this study, we investigated the effects of TKI258, a tyrosine kinase inhibitor to FGFR, PDGFR, and VEGFR on pancreatic cancer cell lines (HPAF-II, BxPC-3, MiaPaCa2, and L3.6pl), endothelial cells, and vascular smooth muscle cells (VSMC). Results showed that treatment with TKI258 impaired activation of signaling intermediates in pancreatic cancer cells, endothelial cells, and VSMCs, even upon stimulation with FGF-1, FGF-2, VEGF-A, and PDGF-B. Furthermore, blockade of FGFR/PDGFR/VEGFR reduced survivin expression and improved activity of gemcitabine in MiaPaCa2 pancreatic cancer cells. In addition, motility of cancer cells, endothelial cells, and VSMCs was reduced upon treatment with TKI258. In vivo, therapy with TKI258 led to dose-dependent inhibition of subcutaneous (HPAF-II) and orthotopic (L3.6pl) tumor growth. Immunohistochemical analysis revealed effects on tumor cell proliferation [bromodeoxyuridine (BrdUrd)] and tumor vascularization (CD31). Moreover, lymph node metastases were significantly reduced in the orthotopic tumor model when treatment was initiated early with TKI258 (30 mg/kg/d). In established tumors, TKI258 (30 mg/kg/d) led to significant growth delay and improved survival in subcutaneous and orthotopic models, respectively. These data provide evidence that targeting FGFR/PDFGR/VEGFR with TKI258 may be effective in human pancreatic cancer and warrants further clinical evaluation.


Assuntos
Antineoplásicos/farmacologia , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
EMBO Rep ; 11(6): 431-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20448665

RESUMO

The prostate is a highly specialized mammalian organ that produces and releases large amounts of citrate. However, the citrate release mechanism is not known. Here, we present the results of molecular cloning of a citrate transporter from human normal prostate epithelial PNT2-C2 cells shown previously to express such a mechanism. By using rapid amplification of cDNA ends PCR, we determined that the prostatic carrier is an isoform of the mitochondrial transporter SLC25A1 with a different first exon. We confirmed the functionality of the clone by expressing it in human embryonic kidney cells and performing radiotracer experiments and whole-cell patch-clamp recordings. By using short interfering RNAs targeting different parts of the sequence, we confirmed that the cloned protein is the main prostatic transporter responsible for citrate release. We also produced a specific antibody and localized the cloned transporter protein to the plasma membrane of the cells. By using the same antibody, we have shown that the cloned transporter is expressed in non-malignant human tissues.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Evolução Molecular , Próstata/citologia , Sequência de Aminoácidos , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Linhagem Celular , Ácido Cítrico/metabolismo , Células Epiteliais/citologia , Inativação Gênica , Humanos , Imuno-Histoquímica , Íons/metabolismo , Masculino , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Transportadores de Ânions Orgânicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
16.
Eur Biophys J ; 38(8): 1115-25, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19618177

RESUMO

The endocytic membrane activities of two human breast cancer cell lines (MDA-MB-231 and MCF-7) of strong and weak metastatic potential, respectively, were studied in a comparative approach. Uptake of horseradish peroxidase was used to follow endocytosis. Dependence on ionic conditions and voltage-gated sodium channel (VGSC) activity were characterized. Fractal methods were used to analyze quantitative differences in vesicular patterning. Digital quantification showed that MDA-MB-231 cells took up more tracer (i.e., were more endocytic) than MCF-7 cells. For the former, uptake was totally dependent on extracellular Na(+) and partially dependent on extracellular and intracellular Ca(2+) and protein kinase activity. Analyzing the generalized fractal dimension (D(q )) and its Legendre transform f(alpha) revealed that under control conditions, all multifractal parameters determined had values greater for MDA-MB-231 compared with MCF-7 cells, consistent with endocytic/vesicular activity being more developed in the strongly metastatic cells. All fractal parameters studied were sensitive to the VGSC blocker tetrodotoxin (TTX). Some of the parameters had a "simple" dependence on VGSC activity, if present, whereby pretreatment with TTX reduced the values for the MDA-MB-231 cells and eliminated the differences between the two cell lines. For other parameters, however, there was a "complex" dependence on VGSC activity. The possible physical/physiological meaning of the mathematical parameters studied and the nature of involvement of VGSC activity in control of endocytosis/secretion are discussed.


Assuntos
Neoplasias da Mama/fisiopatologia , Membrana Celular , Endocitose , Ativação do Canal Iônico , Canais de Sódio/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Fractais , Humanos
17.
Bioessays ; 31(1): 10-20, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19153992

RESUMO

Citrate, an organic trivalent anion, is a major substrate for generation of energy in most cells. It is produced in mitochondria and used either in the Krebs' cycle or released into cytoplasm through a specific mitochondrial carriers. Citrate can also be taken up from blood through different plasma membrane transporters. In the cytoplasm, citrate can be used ultimately for fatty acid synthesis, which is increased in cancer cells. Here, we review the ways in which citrate can be transported and discuss the changes in transport and metabolism that occur in cancer cells. The primary focus is on the prostate gland, which is known to produce and release large amounts of citrate during its normal secretory function. The significant changes that occur in citrate-related metabolism and transport in prostate cancer are the second focus. This review strives to relate these mechanisms to molecular biology on the one hand and to clinical applications on the other.


Assuntos
Ácido Cítrico/metabolismo , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Transporte Biológico , Membrana Celular/metabolismo , Citoplasma/metabolismo , Ácidos Graxos/metabolismo , Humanos , Hidrogênio/química , Lítio/química , Masculino , Modelos Biológicos
18.
Biosystems ; 94(3): 276-81, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18721854

RESUMO

An important goal in many branches of science, especially in molecular biology and medicine is the quantitative analysis of the structures and their morphology. The morphology can be analyzed in many ways, in particular by the fractal analysis. Apart from the fractal dimension, an important part of the fractal analysis is the lacunarity measurement which, roughly speaking, characterizes the distribution of gaps in the fractal: a fractal with high lacunarity has large gaps. In this paper, we present an extension of the lacunarity measure to objects with nonregular shapes that enables us to provide a successful discrimination of cancer cell lines. The cell lines differ in the shape of vacuole (the gaps in their body) which is perfectly suited for the lacunarity analysis.


Assuntos
Linhagem Celular Tumoral/citologia , Fractais , Vacúolos/ultraestrutura , Linhagem Celular Tumoral/classificação , Humanos , Processamento de Imagem Assistida por Computador
19.
Eur Biophys J ; 37(4): 359-68, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17879092

RESUMO

We have developed a simple yet effective apparatus, based upon negative pressure directed to the tip of a micro-pipette, to measure the adhesiveness of single cells. The "single cell adhesion measuring apparatus" (SCAMA) could differentiate between the adhesion of strongly versus weakly metastatic cancer cells as well as normal cells. Adhesion was quantified as "detachment negative pressure" (DNP) or "DNP relative to cell size" (DNPR) where a noticeable difference in cell size was apparent. Thus, for rat and human prostate and human breast cancer cell lines, adhesiveness (DNPR values) decreased in line with increased metastatic potential. Using the SCAMA, we investigated the effect of tetrodotoxin (TTX), a specific blocker of voltage-gated Na(+) channels (VGSCs), on the adhesion of rat and human prostate cancer cell lines of markedly different metastatic potential. Following pretreatment with TTX (48 h with 1 microM), the adhesion values for the Mat-LyLu cells increased significantly 4.3-fold; there was no effect on the AT-2 cells. For the strongly metastatic PC-3M cells, TTX treatment caused a significant (approximately 30%) increase in adhesion. The adhesion of PNT2-C2 ("normal") cells was not affected by the TTX pretreatment. The TTX-induced increase in the adhesiveness of the strongly metastatic cells was consistent with the functional VGSC expression in these cells and the proposed role of VGSC activity in metastatic cell behaviour. In conclusion, the SCAMA, which can be constructed easily and cheaply, offers a simple and effective method to characterise single-cell adhesion and its modulation.


Assuntos
Biofísica/instrumentação , Neoplasias/patologia , Animais , Biofísica/métodos , Adesão Celular , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Masculino , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias da Próstata/patologia , Ratos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Tetrodotoxina/farmacologia
20.
Int J Biochem Cell Biol ; 38(10): 1766-77, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16798056

RESUMO

Prostate is a unique organ that produces and releases large amounts of citrate. This is reduced significantly in cancer and it is possible that citrate is (re)taken up and used as a metabolite to enhance cellular activity. The main purpose of this study was to determine how cytosolic citrate might affect in vitro metastatic cell behaviours (lateral motility, endocytosis and adhesion). Normal (PNT2-C2) and metastatic (PC-3M) human prostate cancer cells were used in a comparative approach. As regards intermediary metabolic enzymes, aconitase and fatty acid synthase, already implicated in prostate cancer, were evaluated. The level of intracellular citrate was significantly higher in PNT2-C2 cells under both control conditions and following preincubation in extracellular citrate. Supply of exogenous citrate enhanced endocytosis, lateral motility, decreased cell adhesion of PC-3M cells but failed to produce any effect on normal cells. Real-time PCR measurements showed that the mRNA levels of mitochondrial and cytosolic aconitases and fatty acid synthase were significantly higher in PC-3M cells. Correspondingly, aconitase activity was also higher in PC-3M cells. Using cerulenin (an inhibitor of fatty acid synthase), oxalomalate and fluorocitrate (inhibiting aconitases), we investigated the dependence of citrate-induced down-regulation of cellular adhesion on aconitase and fatty acid synthase activities. It was concluded: (1) that strongly metastatic PC-3M cells stored less/utilised more cytosolic citrate than the normal PNT2-C2 cells and (2) that cancer cells could metabolise cytoplasmic citrate via aconitase and fatty acid synthase to enhance their metastatic behaviour.


Assuntos
Aconitato Hidratase/metabolismo , Ácido Cítrico/metabolismo , Ácido Graxo Sintases/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Aconitato Hidratase/genética , Transporte Biológico , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ácido Cítrico/farmacologia , Citosol/metabolismo , Ácido Graxo Sintases/genética , Humanos , Masculino , Metástase Neoplásica , Neoplasias da Próstata/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA