Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0301070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771784

RESUMO

OBJECTIVE: To describe the implementation of a test-negative design case-control study in California during the Coronavirus Disease 2019 (COVID-19) pandemic. STUDY DESIGN: Test-negative case-control study. METHODS: Between February 24, 2021 - February 24, 2022, a team of 34 interviewers called 38,470 Californians, enrolling 1,885 that tested positive for SARS-CoV-2 (cases) and 1,871 testing negative for SARS-CoV-2 (controls) for 20-minute telephone survey. We estimated adjusted odds ratios for answering the phone and consenting to participate using mixed effects logistic regression. We used a web-based anonymous survey to compile interviewer experiences. RESULTS: Cases had 1.29-fold (95% CI: 1.24-1.35) higher adjusted odds of answering the phone and 1.69-fold (1.56-1.83) higher adjusted odds of consenting to participate compared to controls. Calls placed from 4pm to 6pm had the highest adjusted odds of being answered. Some interviewers experienced mental wellness challenges interacting with participants with physical (e.g., food, shelter, etc.) and emotional (e.g., grief counseling) needs, and enduring verbal harassment from individuals called. CONCLUSIONS: Calls placed during afternoon hours may optimize response rate when enrolling controls to a case-control study during a public health emergency response. Proactive check-ins and continual collection of interviewer experience(s) and may help maintain mental wellbeing of investigation workforce. Remaining adaptive to the dynamic needs of the investigation team is critical to a successful study, especially in emergent public health crises, like that represented by the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Telefone , Humanos , COVID-19/epidemiologia , COVID-19/psicologia , Estudos de Casos e Controles , California/epidemiologia , Masculino , Feminino , Adulto , SARS-CoV-2/isolamento & purificação , Pessoa de Meia-Idade , Inquéritos e Questionários , Pandemias , Adolescente , Idoso , Adulto Jovem , Teste para COVID-19/métodos
2.
Vaccine ; 41(10): 1649-1656, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746740

RESUMO

INTRODUCTION: Uptake of COVID-19 vaccination remains suboptimal in the United States and other settings. Though early reports indicated that a strong majority of people were interested in receiving the COVID-19 vaccine, the association between vaccine intention and uptake is not yet fully understood. Ourobjective was todescribe predictors of vaccine uptake, and estimate the sensitivity, specificity, and predictive values of self-reported COVID-19 vaccine status compared to a comprehensive statewide COVID-19 vaccine registry. METHODS: A cohort of California residents that received a molecular test for SARS-CoV-2 infection during 24 February-5 December 2021 were enrolled in a telephone-administered survey. Survey participants were matched with records in a statewide immunization registry. Cox proportional hazards model were used to compare time to vaccination among those unvaccinated at survey enrollment by self-reported COVID-19 vaccination intention. RESULTS: Among 864 participants who were unvaccinated at the time of interview, 272 (31%) had documentation of receipt of COVID-19 vaccination at a later date; including 194/423 (45.9%) who had initially reported being willing to receive vaccination, 41/185 (22.2%) who reported being unsure about vaccination, and 37/278 (13.3%) who reported unwillingness to receive vaccination.Adjusted hazard ratios (aHRs) for registry-confirmed COVID-19 vaccination were 0.49 (95% confidence interval: 0.32-0.76) and 0.21 (0.12-0.36) for participants expressing uncertainty and unwillingness to receive vaccination, respectively, as compared with participants who reported being willing to receive vaccination. Time to vaccination was shorter among participants from higher-income households (aHR = 3.30 [2.02-5.39]) and who reported co-morbidities or immunocompromising conditions (aHR = 1.54 [1.01-2.36]).Sensitivity of self-reported COVID-19 vaccination status was 82% (80-85%) overall, and 98% (97-99%) among those referencing vaccination records; specificity was 87% (86-89%). CONCLUSION: Willingness to receive COVID-19 vaccination was an imperfect predictor of real-world vaccine uptake. Improved messaging about COVID-19 vaccination regardless of previous SARS-CoV-2 infection status may help improve uptake.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Hesitação Vacinal , SARS-CoV-2 , Vacinação , Sistema de Registros
3.
Am J Epidemiol ; 192(6): 895-907, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702469

RESUMO

Concerns about the duration of protection conferred by coronavirus disease 2019 (COVID-19) vaccines have arisen in postlicensure evaluations. "Depletion of susceptibles," a bias driven by differential accrual of infection among vaccinated and unvaccinated individuals, may obscure vaccine effectiveness (VE) estimates, hindering interpretation. We enrolled California residents who received molecular SARS-CoV-2 tests in a matched, test-negative design, case-control study to estimate VE of mRNA-based COVID-19 vaccines between February 23 and December 5, 2021. We analyzed waning protection following 2 vaccine doses using conditional logistic regression models. Additionally, we used data from a population-based serological study to adjust for "depletion-of-susceptibles" bias and estimated VE for 3 doses, by time since second dose receipt. Pooled VE of BNT162b2 and mRNA-1273 against symptomatic SARS-CoV-2 infection was 91.3% (95% confidence interval (CI): 83.8, 95.4) at 14 days after second-dose receipt and declined to 50.8% (95% CI: 19.7, 69.8) at 7 months. Adjusting for depletion-of-susceptibles bias, we estimated VE of 53.2% (95% CI: 23.6, 71.2) at 7 months after primary mRNA vaccination series. A booster dose of BN162b2 or mRNA-1273 increased VE to 95.0% (95% CI: 82.8, 98.6). These findings confirm that observed waning of protection is not attributable to epidemiologic bias and support ongoing efforts to administer additional vaccine doses to mitigate burden of COVID-19.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Humanos , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Casos e Controles , Eficácia de Vacinas , SARS-CoV-2/genética , RNA Mensageiro
4.
Vaccine ; 41(6): 1190-1197, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585281

RESUMO

BACKGROUND: Despite lower circulation of influenza virus throughout 2020-2022 during the COVID-19 pandemic, seasonal influenza vaccination has remained a primary tool to reduce influenza-associated illness and death. The relationship between the decision to receive a COVID-19 vaccine and/or an influenza vaccine is not well understood. METHODS: We assessed predictors of receipt of 2021-2022 influenza vaccine in a secondary analysis of data from a case-control study enrolling individuals who received SARS-CoV-2 testing. We used mixed effects logistic regression to estimate factors associated with receipt of seasonal influenza vaccine. We also constructed multinomial adjusted marginal probability models of being vaccinated for COVID-19 only, seasonal influenza only, or both as compared with receipt of neither vaccination. RESULTS: Among 1261 eligible participants recruited between 22 October 2021-22 June 2022, 43% (545) were vaccinated with both seasonal influenza vaccine and >1 dose of a COVID-19 vaccine, 34% (426) received >1 dose of a COVID-19 vaccine only, 4% (49) received seasonal influenza vaccine only, and 19% (241) received neither vaccine. Receipt of >1 COVID-19 vaccine dose was associated with seasonal influenza vaccination (adjusted odds ratio [aOR]: 3.72; 95% confidence interval [CI]: 2.15-6.43); this association was stronger among participants receiving >1 COVID-19 booster dose (aOR = 16.50 [10.10-26.97]). Compared with participants testing negative for SARS- CoV-2 infection, participants testing positive had lower odds of receipt of 2021-2022 seasonal influenza vaccine (aOR = 0.64 [0.50-0.82]). CONCLUSIONS: Recipients of a COVID-19 vaccine were more likely to receive seasonal influenza vaccine during the 2021-2022 season. Factors associated with individuals' likelihood of receiving COVID-19 and seasonal influenza vaccines will be important to account for in future studies of vaccine effectiveness against both conditions. Participants who tested positive for SARS-CoV-2 in our sample were less likely to have received seasonal influenza vaccine, suggesting an opportunity to offer influenza vaccination before or after a COVID-19 diagnosis.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estações do Ano , Teste para COVID-19 , Vacinas contra COVID-19 , Pandemias/prevenção & controle , Estudos de Casos e Controles , SARS-CoV-2 , California/epidemiologia , Vacinação
5.
MMWR Morb Mortal Wkly Rep ; 71(6): 212-216, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143470

RESUMO

The use of face masks or respirators (N95/KN95) is recommended to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 (1). Well-fitting face masks and respirators effectively filter virus-sized particles in laboratory conditions (2,3), though few studies have assessed their real-world effectiveness in preventing acquisition of SARS-CoV-2 infection (4). A test-negative design case-control study enrolled randomly selected California residents who had received a test result for SARS-CoV-2 during February 18-December 1, 2021. Face mask or respirator use was assessed among 652 case-participants (residents who had received positive test results for SARS-CoV-2) and 1,176 matched control-participants (residents who had received negative test results for SARS-CoV-2) who self-reported being in indoor public settings during the 2 weeks preceding testing and who reported no known contact with anyone with confirmed or suspected SARS-CoV-2 infection during this time. Always using a face mask or respirator in indoor public settings was associated with lower adjusted odds of a positive test result compared with never wearing a face mask or respirator in these settings (adjusted odds ratio [aOR] = 0.44; 95% CI = 0.24-0.82). Among 534 participants who specified the type of face covering they typically used, wearing N95/KN95 respirators (aOR = 0.17; 95% CI = 0.05-0.64) or surgical masks (aOR = 0.34; 95% CI = 0.13-0.90) was associated with significantly lower adjusted odds of a positive test result compared with not wearing any face mask or respirator. These findings reinforce that in addition to being up to date with recommended COVID-19 vaccinations, consistently wearing a face mask or respirator in indoor public settings reduces the risk of acquiring SARS-CoV-2 infection. Using a respirator offers the highest level of personal protection against acquiring infection, although it is most important to wear a mask or respirator that is comfortable and can be used consistently.


Assuntos
COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Máscaras , Respiradores N95 , Adolescente , Adulto , Idoso , COVID-19/diagnóstico , Teste para COVID-19 , California/epidemiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Adulto Jovem
6.
MMWR Morb Mortal Wkly Rep ; 71(4): 125-131, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35085222

RESUMO

By November 30, 2021, approximately 130,781 COVID-19-associated deaths, one in six of all U.S. deaths from COVID-19, had occurred in California and New York.* COVID-19 vaccination protects against infection with SARS-CoV-2 (the virus that causes COVID-19), associated severe illness, and death (1,2); among those who survive, previous SARS-CoV-2 infection also confers protection against severe outcomes in the event of reinfection (3,4). The relative magnitude and duration of infection- and vaccine-derived protection, alone and together, can guide public health planning and epidemic forecasting. To examine the impact of primary COVID-19 vaccination and previous SARS-CoV-2 infection on COVID-19 incidence and hospitalization rates, statewide testing, surveillance, and COVID-19 immunization data from California and New York (which account for 18% of the U.S. population) were analyzed. Four cohorts of adults aged ≥18 years were considered: persons who were 1) unvaccinated with no previous laboratory-confirmed COVID-19 diagnosis, 2) vaccinated (14 days after completion of a primary COVID-19 vaccination series) with no previous COVID-19 diagnosis, 3) unvaccinated with a previous COVID-19 diagnosis, and 4) vaccinated with a previous COVID-19 diagnosis. Age-adjusted hazard rates of incident laboratory-confirmed COVID-19 cases in both states were compared among cohorts, and in California, hospitalizations during May 30-November 20, 2021, were also compared. During the study period, COVID-19 incidence in both states was highest among unvaccinated persons without a previous COVID-19 diagnosis compared with that among the other three groups. During the week beginning May 30, 2021, compared with COVID-19 case rates among unvaccinated persons without a previous COVID-19 diagnosis, COVID-19 case rates were 19.9-fold (California) and 18.4-fold (New York) lower among vaccinated persons without a previous diagnosis; 7.2-fold (California) and 9.9-fold lower (New York) among unvaccinated persons with a previous COVID-19 diagnosis; and 9.6-fold (California) and 8.5-fold lower (New York) among vaccinated persons with a previous COVID-19 diagnosis. During the same period, compared with hospitalization rates among unvaccinated persons without a previous COVID-19 diagnosis, hospitalization rates in California followed a similar pattern. These relationships changed after the SARS-CoV-2 Delta variant became predominant (i.e., accounted for >50% of sequenced isolates) in late June and July. By the week beginning October 3, compared with COVID-19 cases rates among unvaccinated persons without a previous COVID-19 diagnosis, case rates among vaccinated persons without a previous COVID-19 diagnosis were 6.2-fold (California) and 4.5-fold (New York) lower; rates were substantially lower among both groups with previous COVID-19 diagnoses, including 29.0-fold (California) and 14.7-fold lower (New York) among unvaccinated persons with a previous diagnosis, and 32.5-fold (California) and 19.8-fold lower (New York) among vaccinated persons with a previous diagnosis of COVID-19. During the same period, compared with hospitalization rates among unvaccinated persons without a previous COVID-19 diagnosis, hospitalization rates in California followed a similar pattern. These results demonstrate that vaccination protects against COVID-19 and related hospitalization, and that surviving a previous infection protects against a reinfection and related hospitalization. Importantly, infection-derived protection was higher after the Delta variant became predominant, a time when vaccine-induced immunity for many persons declined because of immune evasion and immunologic waning (2,5,6). Similar cohort data accounting for booster doses needs to be assessed, as new variants, including Omicron, circulate. Although the epidemiology of COVID-19 might change with the emergence of new variants, vaccination remains the safest strategy to prevent SARS-CoV-2 infections and associated complications; all eligible persons should be up to date with COVID-19 vaccination. Additional recommendations for vaccine doses might be warranted in the future as the virus and immunity levels change.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/epidemiologia , COVID-19/prevenção & controle , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Vacinação/estatística & dados numéricos , Adulto , California/epidemiologia , Estudos de Coortes , Humanos , Incidência , Pessoa de Meia-Idade , New York/epidemiologia
7.
Clin Infect Dis ; 74(8): 1382-1389, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-34282839

RESUMO

BACKGROUND: Estimates of coronavirus disease 2019 (COVID-19) vaccine effectiveness under real-world conditions, and understanding of barriers to uptake, are necessary to inform vaccine rollout. METHODS: We enrolled cases (testing positive) and controls (testing negative) from among the population whose SARS-CoV-2 molecular diagnostic test results from 24 February to 29 April 2021 were reported to the California Department of Public Health. Participants were matched on age, sex, and geographic region. We assessed participants' self-reported history of mRNA-based COVID-19 vaccine receipt (BNT162b2 and mRNA-1273). Participants were considered fully vaccinated 2 weeks after second dose receipt. Among unvaccinated participants, we assessed willingness to receive vaccination. We measured vaccine effectiveness (VE) via the matched odds ratio of prior vaccination, comparing cases with controls. RESULTS: We enrolled 1023 eligible participants aged ≥18 years. Among 525 cases, 71 (13.5%) received BNT162b2 or mRNA-1273; 20 (3.8%) were fully vaccinated with either product. Among 498 controls, 185 (37.1%) received BNT162b2 or mRNA-1273; 86 (16.3%) were fully vaccinated with either product. Two weeks after second dose receipt, VE was 87.0% (95% confidence interval: 68.6-94.6%) and 86.2% (68.4-93.9%) for BNT162b2 and mRNA-1273, respectively. Fully vaccinated participants receiving either product experienced 91.3% (79.3-96.3%) and 68.3% (27.9-85.7%) VE against symptomatic and asymptomatic infection, respectively. Among unvaccinated participants, 42.4% (159/375) residing in rural regions and 23.8% (67/281) residing in urban regions reported hesitancy to receive COVID-19 vaccination. CONCLUSIONS: Authorized mRNA-based vaccines are effective at reducing documented SARS-CoV-2 infections within the general population of California. Vaccine hesitancy presents a barrier to reaching coverage levels needed for herd immunity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adolescente , Adulto , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , California/epidemiologia , Humanos , RNA Mensageiro , SARS-CoV-2/genética , Vacinas de mRNA
8.
Clin Infect Dis ; 75(1): e276-e288, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34932817

RESUMO

BACKGROUND: Non-pharmaceutical interventions (NPIs) are recommended for COVID-19 prevention. However, the effectiveness of NPIs in preventing SARS-CoV-2 transmission remains poorly quantified. METHODS: We conducted a test-negative design case-control study enrolling cases (testing positive for SARS-CoV-2) and controls (testing negative) with molecular SARS-CoV-2 diagnostic test results reported to California Department of Public Health between 24 February-12 November, 2021. We used conditional logistic regression to estimate adjusted odds ratios (aORs) of case status among participants who reported contact with an individual known or suspected to have been infected with SARS-CoV-2 ("high-risk exposure") ≤14 days before testing. RESULTS: 751 of 1448 cases (52%) and 255 of 1443 controls (18%) reported high-risk exposures ≤14 days before testing. Adjusted odds of case status were 3.02-fold (95% confidence interval: 1.75-5.22) higher when high-risk exposures occurred with household members (vs. other contacts), 2.10-fold (1.05-4.21) higher when exposures occurred indoors (vs. outdoors only), and 2.15-fold (1.27-3.67) higher when exposures lasted ≥3 hours (vs. shorter durations) among unvaccinated and partially-vaccinated individuals; excess risk associated with such exposures was mitigated among fully-vaccinated individuals. Cases were less likely than controls to report mask usage during high-risk exposures (aOR = 0.50 [0.29-0.85]). The adjusted odds of case status was lower for fully-vaccinated (aOR = 0.25 [0.15-0.43]) participants compared to unvaccinated participants. Benefits of mask usage were greatest among unvaccinated and partially-vaccinated participants, and in interactions involving non-household contacts or interactions occurring without physical contact. CONCLUSIONS: NPIs reduced the likelihood of SARS-CoV-2 infection following high-risk exposure. Vaccine effectiveness was substantial for partially and fully vaccinated persons.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Casos e Controles , Humanos , SARS-CoV-2
9.
Emerg Infect Dis ; 27(11): 2923-2926, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34586057

RESUMO

During September 1, 2020-April 30, 2021, the California Department of Public Health, Richmond, California, USA, received 255 positive influenza molecular test results that matched with severe acute respiratory syndrome coronavirus 2 molecular test results; 58 (23%) persons were co-infected. Influenza activity was minimal in California, and co-infections were sporadic.


Assuntos
COVID-19 , Coinfecção , Influenza Humana , Coinfecção/epidemiologia , Humanos , Influenza Humana/epidemiologia , Saúde Pública , SARS-CoV-2
10.
Health Aff (Millwood) ; 40(6): 870-878, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33979192

RESUMO

With a population of forty million and substantial geographic variation in sociodemographics and health services, California is an important setting in which to study disparities. Its population (37.5 percent White, 39.1 percent Latino, 5.3 percent Black, and 14.4 percent Asian) experienced 59,258 COVID-19 deaths through April 14, 2021-the most of any state. We analyzed California's racial/ethnic disparities in COVID-19 exposure risks, testing rates, test positivity, and case rates through October 2020, combining data from 15.4 million SARS-CoV-2 tests with subcounty exposure risk estimates from the American Community Survey. We defined "high-exposure-risk" households as those with one or more essential workers and fewer rooms than inhabitants. Latino people in California are 8.1 times more likely to live in high-exposure-risk households than White people (23.6 percent versus 2.9 percent), are overrepresented in cumulative cases (3,784 versus 1,112 per 100,000 people), and are underrepresented in cumulative testing (35,635 versus 48,930 per 100,000 people). These risks and outcomes were worse for Latino people than for members of other racial/ethnic minority groups. Subcounty disparity analyses can inform targeting of interventions and resources, including community-based testing and vaccine access measures. Tracking COVID-19 disparities and developing equity-focused public health programming that mitigates the effects of systemic racism can help improve health outcomes among California's populations of color.


Assuntos
COVID-19 , Etnicidade , California , Disparidades nos Níveis de Saúde , Humanos , Grupos Minoritários , SARS-CoV-2 , Estados Unidos
11.
MMWR Morb Mortal Wkly Rep ; 69(19): 599-602, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32407299

RESUMO

The threat of introduction of coronavirus disease 2019 (COVID-19) into the United States with the potential for community transmission prompted U.S. federal officials in February 2020 to screen travelers from China, and later Iran, and collect and transmit their demographic and contact information to states for follow-up. During February 5-March 17, 2020, the California Department of Public Health (CDPH) received and transmitted contact information for 11,574 international travelers to 51 of 61 local health jurisdictions at a cost of 1,694 hours of CDPH personnel time. If resources permitted, local health jurisdictions contacted travelers, interviewed them, and oversaw 14 days of quarantine, self-monitoring, or both, based on CDC risk assessment criteria for COVID-19. Challenges encountered during follow-up included errors in the recording of contact information and variation in the availability of resources in local health jurisdictions to address the substantial workload. Among COVID-19 patients reported to CDPH, three matched persons previously reported as travelers to CDPH. Despite intensive effort, the traveler screening system did not effectively prevent introduction of COVID-19 into California. Effectiveness of COVID-19 screening and monitoring in travelers to California was limited by incomplete traveler information received by federal officials and transmitted to states, the number of travelers needing follow-up, and the potential for presymptomatic and asymptomatic transmission. More efficient methods of collecting and transmitting passenger data, including electronic provision of flight manifests by airlines to federal officials and flexible text-messaging tools, would help local health jurisdictions reach out to all at-risk travelers quickly, thereby facilitating timely testing, case identification, and contact investigations. State and local health departments should weigh the resources needed to implement incoming traveler monitoring against community mitigation activities, understanding that the priorities of each might shift during the COVID-19 pandemic.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Vigilância em Saúde Pública , COVID-19 , California/epidemiologia , Humanos , Internacionalidade , Viagem
12.
BMC Public Health ; 19(1): 1659, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823751

RESUMO

BACKGROUND: Infectious disease forecasting aims to predict characteristics of both seasonal epidemics and future pandemics. Accurate and timely infectious disease forecasts could aid public health responses by informing key preparation and mitigation efforts. MAIN BODY: For forecasts to be fully integrated into public health decision-making, federal, state, and local officials must understand how forecasts were made, how to interpret forecasts, and how well the forecasts have performed in the past. Since the 2013-14 influenza season, the Influenza Division at the Centers for Disease Control and Prevention (CDC) has hosted collaborative challenges to forecast the timing, intensity, and short-term trajectory of influenza-like illness in the United States. Additional efforts to advance forecasting science have included influenza initiatives focused on state-level and hospitalization forecasts, as well as other infectious diseases. Using CDC influenza forecasting challenges as an example, this paper provides an overview of infectious disease forecasting; applications of forecasting to public health; and current work to develop best practices for forecast methodology, applications, and communication. CONCLUSIONS: These efforts, along with other infectious disease forecasting initiatives, can foster the continued advancement of forecasting science.


Assuntos
Doenças Transmissíveis/epidemiologia , Previsões , Saúde Pública , Centers for Disease Control and Prevention, U.S. , Epidemias , Humanos , Influenza Humana/epidemiologia , Modelos Teóricos , Pandemias , Estações do Ano , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA